Should I really reconstruct a state from that data?

Matthias Kleinmann, T. Moroder, Ph. Schindler, Th. Monz, O. Gühne, R. Blatt

University of Siegen, Germany

INIVERSITÄT

Tomography: issues, tweaks & tricks

Reasons for state tomography:

- demonstration of a good control of a quantum system
- experimental verification of interesting states
- most general dataset for later analysis

Tomography: issues, tweaks & tricks

Reasons for state tomography:

- demonstration of a good control of a quantum system
- experimental verification of interesting states
- most general dataset for later analysis

Difficulties:

- exponential cost in measurement time
 - \hookrightarrow compressed sensing, permutation invariant tomography, \ldots
- exponential cost of classical computation time
 - \hookrightarrow compressed sensing, permutation invariant tomography, \ldots
- low sampled data with low statistical significance

 → maximum likelihood estimation, Bayesian methods, maximum
 entropy principle, Ockham's razor...

- naïve state reconstruction does not yield a valid quantum state (negative eigenvalues)
- known to be among the best "estimators"
- very easy to implement

- naïve state reconstruction does not yield a valid quantum state (negative eigenvalues)
- known to be among the best "estimators"
- very easy to implement

- naïve state reconstruction does not yield a valid quantum state (negative eigenvalues)
- known to be among the best "estimators"
- very easy to implement

The maximum likelihood methods yields a valid quantum state, even for completely messed up data.

- naïve state reconstruction does not yield a valid quantum state (negative eigenvalues)
- known to be among the best "estimators"
- very easy to implement

The maximum likelihood methods yields a valid quantum state, even for completely messed up data.

- Why do we get an nonphysical state in the first place?
- What if systematic errors are present?

Simple schemes

Example: for Q qubits, measure locally all Pauli operators,

$$\alpha = (z, z, \dots) : \quad \sigma_z \otimes \sigma_z \otimes \cdots ,$$

$$\alpha = (z, x, \dots) : \quad \sigma_z \otimes \sigma_x \otimes \cdots ,$$

$$\alpha = (x, z, \dots) : \quad \sigma_x \otimes \sigma_z \otimes \cdots$$

. . .

with outcomes $i = (+, +, \dots)$, $i = (+, -, \dots)$,...

Simple schemes

Example: for Q qubits, measure locally all Pauli operators,

$$\alpha = (z, z, \dots) : \quad \sigma_z \otimes \sigma_z \otimes \cdots ,$$

$$\alpha = (z, x, \dots) : \quad \sigma_z \otimes \sigma_x \otimes \cdots ,$$

$$\alpha = (x, z, \dots) : \quad \sigma_x \otimes \sigma_z \otimes \cdots$$

. . .

with outcomes $i = (+, +, \dots)$, $i = (+, -, \dots)$,...

More generally:

Experimenter performs measurements $E_{i|\alpha}$ yielding

$$p_{i|\alpha} = \operatorname{tr}(E_{i|\alpha} \, \varrho_{\exp}) \text{ or } \mathbf{p} = M[\varrho_{\exp}].$$

Complete tomography, if $M[\varrho] \neq M[\varrho']$.

• in an N_{α} -fold measurement of setting α , we sample $(n_{\alpha,1}, n_{\alpha,2}, ...)$ from the multinomial distribution $(p_{\alpha,1}, p_{\alpha,2}, ...)$

 \hookrightarrow frequencies $f_{i|\alpha} = n_{i|\alpha}/N_{\alpha}$

• However: $f_{i|\alpha} \neq p_{i|\alpha}$

• in an N_{α} -fold measurement of setting α , we sample $(n_{\alpha,1}, n_{\alpha,2}, ...)$ from the multinomial distribution $(p_{\alpha,1}, p_{\alpha,2}, ...)$

$$\hookrightarrow$$
 frequencies $f_{i|\alpha} = n_{i|\alpha}/N_{lpha}$

• However:
$$f_{i|\alpha} \neq p_{i|\alpha}$$

Innocent state reconstruction

Least square
$$\sum_{i|\alpha} (f_{i|\alpha} - M[\varrho])^2$$
 yields $\varrho_{ls} = M^{-1}[\mathbf{f}]$.

• in an N_{α} -fold measurement of setting α , we sample $(n_{\alpha,1}, n_{\alpha,2}, ...)$ from the multinomial distribution $(p_{\alpha,1}, p_{\alpha,2}, ...)$

$$\hookrightarrow$$
 frequencies $f_{i|\alpha} = n_{i|\alpha}/N_{lpha}$

• However:
$$f_{i|\alpha} \neq p_{i|\alpha}$$

Innocent state reconstruction

Least square
$$\sum_{i|lpha} (f_{i|lpha} - M[arrho])^2$$
 yields $arrho_{
m ls} = M^{-1}[{f f}]$.

Is ρ_{ls} a bad idea?

• in an N_{α} -fold measurement of setting α , we sample $(n_{\alpha,1}, n_{\alpha,2}, ...)$ from the multinomial distribution $(p_{\alpha,1}, p_{\alpha,2}, ...)$

$$\hookrightarrow$$
 frequencies $f_{i|\alpha} = n_{i|\alpha}/N_{lpha}$

• However:
$$f_{i|\alpha} \neq p_{i|\alpha}$$

Innocent state reconstruction

Least square
$$\sum_{i|\alpha} (f_{i|\alpha} - M[\varrho])^2$$
 yields $\varrho_{\rm ls} = M^{-1}[\mathbf{f}]$.

Is $\varrho_{\rm ls}$ a bad idea?

- + easy and fast to compute
- + converges to true value
- not appropriate for small N_{lpha}
- has negative eigenvalues

Hoeffding beats negative eigenvalues

Suppressed negative expectation values

Choose an arbitrary vector $|\psi\rangle$. Then for t>0,

 $\Pr[\langle \psi | \rho_{\rm ls} | \psi \rangle < -t] \le \exp[-t^2 N / {\rm const}_{\psi}].$

 \hookrightarrow Negative expectation values occur rarely.

Hoeffding beats negative eigenvalues

Suppressed negative expectation values

Choose an arbitrary vector $|\psi\rangle$. Then for t>0,

 $\Pr[\langle \psi | \varrho_{\rm ls} | \psi \rangle < -t] \le \exp[-t^2 N / {\rm const}_{\psi}].$

 \hookrightarrow Negative expectation values occur rarely.

A test procedure:

- take two datasets I and II for the same $arrho_{\mathrm{exp}}$
- choose $|\psi
 angle$ according to $\varrho^{\rm I}_{\rm ls}$
- then it is unlikely to observe $\langle \psi | \varrho^{\rm II}_{\rm ls} | \psi \rangle < -t$
- \hookrightarrow negative eigenvalues are in random directions

The issue of overcomplete tomography

- Usually tomography is performed in an overcomplete setup.
- Example: 3^Q Pauli measurements with $2^Q 1$ outcomes vs. $4^Q 1$ entries in the density matrix.
- Reduction from $\sim 6^Q$ to $\sim 4^Q$ dimensions.

The issue of overcomplete tomography

- Usually tomography is performed in an overcomplete setup.
- Example: 3^Q Pauli measurements with $2^Q 1$ outcomes vs. $4^Q 1$ entries in the density matrix.
- Reduction from $\sim 6^Q$ to $\sim 4^Q$ dimensions.

Linear dependencies

Let \mathbf{p}_{ls} be the probabilities predicted from ϱ_{ls} . Then for t>0,

$$\Pr[|(\mathbf{p}_{\rm ls}^{\mathsf{I}} - \mathbf{f}^{\mathsf{I}}) \cdot (\mathbf{p}_{\rm ls}^{\mathsf{II}} - \mathbf{f}^{\mathsf{II}})| > t] \le 2\exp[-t^2N/\mathrm{const}_{\mathbf{f}^{\mathsf{I}}}].$$

 \hookrightarrow Deviation from predicted probabilities are not systematic.

Like a witness

Under the assumption (data) $\sim {\bf p} = M[\varrho_{\rm exp}]$, we arrived at

 $\Pr[T(\mathsf{data}) > t] \le \exp[-t^2 N / \mathrm{const}_T]$

Under the assumption (data) $\sim {\bf p} = M[\varrho_{\rm exp}]$, we arrived at

$$\Pr[T(\mathsf{data}) > t] \le \exp[-t^2 N / \mathrm{const}_T]$$

Sample from Gaussian process, get value x, then

$$\Pr[|x| > t] = 1 - \int_{-t}^{t} e^{-x^2/2} / \sqrt{2\pi} \, \mathrm{d}x.$$

Under the assumption (data) $\sim \mathbf{p} = M[\varrho_{\mathrm{exp}}]$, we arrived at

$$\Pr[T(\mathsf{data}) > t] \le \exp[-t^2 N / \mathrm{const}_T]$$

Sample from Gaussian process, get value x, then

$$\Pr[|x| > t] = 1 - \int_{-t}^{t} e^{-x^2/2} / \sqrt{2\pi} \, \mathrm{d}x.$$

Under the assumption (data) $\sim \mathbf{p} = M[\varrho_{\mathrm{exp}}]$, we arrived at

$$\Pr[T(\mathsf{data}) > t] \le \exp[-t^2 N / \mathrm{const}_T]$$

Sample from Gaussian process, get value x, then

$$\Pr[|x| > t] = 1 - \int_{-t}^{t} e^{-x^2/2} / \sqrt{2\pi} \, \mathrm{d}x.$$

We say, x is excluded by a x-σ region,
e.g. 1σ: 31.7%, 2σ: 4.56%, 3σ: 0.270%, ...
Let's apply this to our methods – shortly.

Likelihood ratio test

- In overcomplete tomography, M fails to be surjective $(6^Q \rightarrow 4^Q)$.
- \hookrightarrow In the quantum model we assume $\mathbf{p} \in \operatorname{range} M$.

Likelihood ratio test

- In overcomplete tomography, M fails to be surjective $(6^Q \rightarrow 4^Q)$.
- \hookrightarrow In the quantum model we assume $\mathbf{p} \in \operatorname{range} M$.

```
Likelihood ratio test/Wilks theorem
```

If $\mathbf{p} \in \operatorname{range} M$, then, as $N \to \infty$,

 $\Pr[2N\inf\{D(\mathbf{f}\|\mathbf{p}) \mid \mathbf{p} \in \operatorname{range} M\} < t] \to Q(\Delta/2, t/2)$

where

- $D(\mathbf{f} \| \mathbf{p}) = \mathbf{f} \cdot \log \mathbf{f} \mathbf{f} \cdot \log \mathbf{p}$ is the relative entropy,
- $Q(s,x)=\Gamma(s,x)/\Gamma(s)$ is the regularized Gamma function,
- $\Delta = \dim \operatorname{range}(M)^{\perp}$ is the dimension deficit.

Empirical results

Given the data, can we exclude, that $\mathbf{p}=M[arrho_{\mathrm{exp}}]$ is a valid model?

state	Q	N	X-talk	w_K	w_R	LR	LR*
		2500	20%	4.0σ	14σ	19σ	$>3.3\sigma$
GHZ	4	750	12%	-	5.0σ	3.6σ	3.3σ
		300	$<\!\!3\%$	0.3σ	0.7σ	(2.6σ)	2.0σ
Bell	2	61650	<3%	-	-	0.6σ	0.7σ
$ \uparrow\uparrow\uparrow\uparrow\rangle$	4	250	?	1.6σ	0σ	(3.4σ)	2.8σ
BE	4	5200	$<\!\!3\%$	0.08σ	0.8σ	0.9σ	0.9σ
W	5	100	4%	0.6σ	0.1σ	(3.3σ)	1.8σ

Summary

- The negative eigenvalues in a linear reconstruction yield very unlikely a negative expectation value.
- Systematic errors can be distinguished from statistical errors using witness-like structures or the likelihood ratio test.
- Our method works on current experimental data.
- [arXiv:very.soon]