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Why do we need to classify non-Gaussianities?

Motivations from

Both Experimental Data Analyses and Theoretical Model Building



Data analyses

Signal to noise ratio not high enough to detect non-G model-independently

Theoretical Construct estimator Fit data to constrain

local local

template for example J yr. for example [y

(WMAP)
Or decompose into set of base functions, and constrain each separable base.

(Fergusson, Liguori, Shellard, 09,10)

> Need theoretical non-G profiles to start with

> Possible signals could be missed if we
are not using the right model or set of basis

> Even if a signal were detected using one template,
it does not mean we have found the right form

> Even if CMB were perfectly Gaussian, we still
need do the same work to reach the conclusion



Theoretical Model Building

> Divide models into categories, so that all models in
the same class share the same non-G feature

> If any such non-G were detected, we know what we
learned concretely in terms of fundamental phyiscs

> Not only classify known non-G, but also discovery
new ones with good model building motivations



A No-go theorem

Simplest inflation models predict unobservable non-G.

(Maldacena, 02; Acquaviva, Bartolo

Matarrese, Riotto, 02)
> Single field

» Canonical kinetic term
> Always slow-roll
» Bunch-Davies vacuum

» Einstein gravity

"> fnr ~ O(c) < 0O(0.01)

Experimentally: fvr = O(1)



Examples of Simplest Slow-Roll Potentials

9 Small field:
1 2

V=V - 5 ?

)

m << H

@ Large field:
V= A\g"

qb > ]\[Plan(k

The other conditions in the no-go theorem also needs to be satisfied.



Much more complicated in realistic model building ......



Inflation Model Building

A landscape of potentials



Inflation Model Building

Warped Calabi-Yau



Inflation Model Building

> n -Problem in slow-roll inflation: (Dine, Fischer, Nemeschansky, 84;
Copeland, Liddle, Lyth, Stewart, Wands, 04)

Backreaction from inflationary background

S

0’)
me~H, ne~ ]l ——t———-mcH np<gl
/‘\
Other model-dependent tuning sources or symmetries
are needed to tune a flatter potential.



Inflation Model Building

» h-Problem in DBI inflation: (X.C., 08)

ds* = h(r)*ds; + h(r) *dr?

DBI inflation requires small warping: /, <« H R

Backreaction from inflationary background

4L
h~ HR _?_> h << HR

Other model dependent tuning sources: moduli deformation, susy breaking etc.
(e.g. Frey, Mazumdar, Myer, 05; McAllister, Silverstein, 07)



Inflation Model Building

> Field range bound: (X.C., Sarangi, Tye, Xu, 06; Baumann, McAllsiter, 06)

J\”{Planck
< 0(0.01
Mpjanck D)
< - e

Cb > ]\’{Planck



Inflation Model Building

> Variation of potential:  (Lyth, 97)

V(6) = 3" Ao

n=0

Msund : €g. higher dim Planck mass, string mass, warped scales etc.

TN fund < ]\[P

Introduce shift symmetry: (e.g. Silverstein, Westphal, McAllsiter, 08)



Algebraic simplicity may not mean simplicity in nature.

Ingredients introduced to solve these problems
often make models step beyond the simplest one.



Beyond the No-Go

» Canonical kinetic term

Non-canonical kinetic terms: DBI inflation, k-inflation, etc

> Always slow-roll

Features in potentials or Lagrangians: sharp, periodic, etc

» Bunch-Davies vacuum

Non-Bunch-Davies vacuum
due to features, boundary condions, low new physics scales, etc

> Single field

Multi-field: turning trajectories, curvatons, inhomogeous reheating surface, etc

Quasi-single field: massive isocurvatons



In-In Formalism
(Schwinger, 61; Weinberg, 05)

Quantum fluctuations =—> Evolution inside, cross, outside horizon =—>
Convert to curvature perturbation at reheating =—>

Observed as correlations of fluctuations in CMB and LSS
Expectation value of an operator in a time-dependent background:

(0| [Texp (z /t: H[(t)dt)] o' (1) [Texp (z ft t H[(t)dtﬂ 0)

t l1 th—1
= [ [ [ () (0. Qu0] )
t t t

0 0 0

(Q(1))



Shape and Running of Bispectra (3pt)

Bispectrum is a function, with magnitude fx7, of three momenta: k1, ko, k3

1
= S(k1, k. ks k;)
(€)= Sk, ko ) s Z
* Shape dependence: K — i ) Lo/l Kok
(Shape of non-G) Fix K = ki + ko + k3, vary ko/k1, ka/k1 .
N
Squeezed Equilateral Folded
* Scale dependence: o ko by ke ke - _ I ; .
Fix ko/ki, ks/k1 | vary K = ky + ko + k3 .

(Running of non-G)



Non-Canonical Kinetic Terms



General Single Field Inflation

Consider the general single field inflation (Lorentz invariant, first derivative)

M,
S = /d417 /_g ITPR + P(X (,5)] X = —%g}uuaﬂ(ba’/(#b
(Garriga, Mukhanov, 99)
* Define parameters: Cg A / > (Seery, Lidsey, 05)

= P’X
b Px +2XPxx

Y = XPx+2X°Pxx

2 .
A= X2P,XX‘|'§X3P,XXX



General Single Field Inflation

Consider the general single field inflation (Lorentz invariant, first derivative)

M
S = /d417 /_g ITPR—I_P(X (,5)] X = —%g}uuaﬂ(ba’/(#b

(Garriga, Mukhanov, 99)
* Define parameters: Cg /2

* Slow-variation parameters:

i ¢ O
T H? C

c =

Require them to be small, independent
of mechanisms that realize the inflation



Example: DBI Inflation (Silverstein, Tong, Alishahiha, 03,04;
X.C., 04)

d32 — h(r)zdc,i + h(’T‘)_QdTQ = Speed limit: r < h2

< ° o >
Voo L 249 | .
V(g) = sm°¢ V(p) ~ Vo — im2¢?
m > ﬂ«’fp]/\/x m~ H

* Action: —jh%wtglﬂm1Vﬁ+fwmwaﬁm¢—fw>l+vw>

P= I XV

Non-Slow-roll Mechanism



Full Bispectrum (X.C., Huang, Kachru, Shiu, 06)

* 11 shapes, speficied by 5 parameters, 3 different orders

* Leading bispectra:

Equilateral bispectra are large if ¢; < 1 or A/X > 1

—214 < fyy <266  (WMAP7, 10)



Physics of Large Equilateral Shape

* Generated by interacting modes during their horizon exit

Quantum fluctuations =) Interacting and exiting horizon =) Frozen

Y
k1 ~ ko ~ ks

\4

For single field, small correlation if ks < ky

Higher derivative terms provide such interactions.

So, the shapes peak in the equilateral limit.



Orthogonalization

C)\S)\ + CCSC — clSl + CQSQ

change of bases

51 : Orthogonal shape —410 < fih <6
(Senatore, Smith, Zaldarriaga,09) (WMAP7, 10)



Features:

> Sharp feature ==  Sinusoidal running

» Periodic features ==>  Resonant running

» Non-Bunch-Davies vacuum == Folded shape + Sinusoida/Resonant running



Sharp Features

(Kofman, 91; (X.C., Easther, Lim, 06, 08;
Wang, Kamionkowski, 99; Bean, X.C., Hailu, Tye, Xu, 08;
Komatsu et al, 03) Hotchkiss, Sarkar, 09)



Sharp Features in Potentials (x.cC_ Easther, Lim, 06,08)

* At sharp feature, ignoring background expansion:

L., 1)

* Energy conservation:

1 -
—¢? +V = const. _
2 0.016¢
0.014¢}
0.012t
AV
—— small — Ae small
V 0.0




Sharp Features in Warp Factors (Bean, X.C., Hailu, Tye, Xu, 08)

* At sharp feature, ignoring background expansion:

L=—T(¢) \/1 —?/T(), ¢ =

T(¢): warped brane tension
* Energy conservation:

T'/cy = const.

0.023

0.022}

AT ) ACS i 0.021:—
—— small — —— small ;
T Cs 0.020

L (t-19)H




e € or ¢y do not change much
due to approximate energy conservation relations

* They change in a very short period of time,
boosting ¢ — 1 or ¢, — s by several orders of magnitude

1455
5 L
J\ P e ;

-1.5 -1 -0.5 1.0

-10 0.5




The Cubic Part

* The exact cubic action for scalar perturbation (

SH
Sy = / dtd*z{—a’(2(1 — (—2) + 2/\)[3% _ (E — 3+ 3¢ )QQ
+ fj(F — 25+ 1 —e)((D0)* — Z(J—Q(()C)(()x)
a_.:je d, n. . a2 o 0L
+ EE(C—EJCZC o (00 (OX)0 + » (P (0X)? + 21Oz h}

As ] :
Al Important in the presence of sharp features



Sinusoidal Running

(X.C., Easther, Lim, 06,08)

o c d (1 SRV .
| s (§> (uklm%(f,—)

%u,’;(ﬂ + perm
4 4
Sharp feature iK T
at Tx €

-feat _: K r
Roughly, S~ [nr sin T too ) ok

10¢ i
.“I‘;-‘/r 7‘\‘:‘\
* Shape is trivial
. . 5t g
(away from squeezed limit) .
i / " ,}}“/\\‘-:;’ / \\'\5_ Pt
/ ‘ /f \ . r\ \ f V«. A
T Y A N W A
* Running is oscillatory \/
. —— \
and localized \J
10} X




Temperature Fluctuations [uK?]

Sharp Features and Statistical Fluctuations

Power spectrum: oscillatory corrections due to the negative energy component

AP o< sin (k*k/Z + 1//’0)

Osillatory frequency is given by location of feature
K
S ~ fltsin (k_ + qﬁo)
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Model Building Realizations

* Small field inflation has very small €
SO very sensitive to tiny features in potential or internal space.

E.g. Brane inflation. (Bean, X.C., Hailu, Tye, Xu, 08)

* Aftermath effect of sudden interactions or particle creation.

E.g. Particle creation = Equilateral + Sinusoidal running

(Barnaby, 10)



Periodic (Frequent) Features

(X.C., Easther, Lim, 08;
Flauger, Pajer, 10;
X.C., 10; Leblond, Pajer, 10)



Resonant Non-Gaussianity
(X.C., Easther, Lim, 08)

* Consider small periodic features in potential or Lagrangian

—> Small oscillatory component to slow-roll parameters
with frequency W

* Mode functions are also oscillatory, and the frequency scans
Highly oscillatory quantum fluctuations == Stretched by inflation

= Frequency is continuously reduced to H = Exit horizon and Frozen

Aslongas w > H,

modes will resonant with the background, creating large non-G.



The Bispectrum

3
Sy = /dtdg.?(: [ -+ %f]@g + .- ]

Without features, 1) ~ 0(62); but here much larger.

H-’l
Cco)(ks) =~ iy Z k;)
O dr :
X / —en'’ (1 — i(ky + ko)T — k:lk:QTQ) k3ehT

+ two pertf. + c.c. .

Freq: W Freq: Mp — H



* Running behavior

The phase of bkgd repeats after AN, = 2nH/w e-fold.

K = ki + ko + k3 changesby AK = KAN, =2nrK H/w

* Amplitude
Each K-mode resonants only once when it sweeps through W .

Integrand starts to cancel after Aty ~ m/Aw

Change from Wto w — Aw takes Aty ~ Aw/(wH)

T
Resonance duration: At ~ 4/ —
wH

wAt o,
Number of resonance oscillation: or N\ 11



8\/§ HS/Q

(X.C., Easther, Lim, 08)

N ﬁ wl/Q‘f]A

sin (C'In(K/k.))
i

I

res
ansatz

S
27 K/AK = w/H

Rescale all momenta by a discrete efold: 27nf /w

Periodic-scale-invariance:

* Leading resonant bisepctrum
C

shapes constrained in WMAP
we could miss the detection

Orthogonal to all three
An example of how

—

-——

* Characteristic running behavior
|
|
|‘ |



Model Building Realizations

* Periodic features from duality cascade in brane inflation

(Hailu, Tye, 06; Bean, X.C., Hailu, Tye, Xu, 08)

Brane moving in throat ==>  Field theory duality cascade =—=>

Dual periodic features in potential or warp factor ==> Sharp or resonant effect

* Periodic features from instantons in monodromy inflation

(Silverstein, Westphal, 08; Flauger, Mcallister, Pajer, Westphal, Xu, 09
Hannestad, Haugboelle, Jarnhus, Sloth, 09)

Tensor mode === Large field === Shift symmetry (string axions) =——>

Broken by non-pert effect ==> Small periodic modulations === Resonant non-G



Non-Bunch-Davies Vacuum

First, very qualitatively ......



Folded Shape (X.C., Huang, Kachru, Shiu, 06; Holman, Tolly,08;
Meerburg, van de Schaar, Corasaniti, Jackson, 09)

* Mode function:

v H o . o
up = u(7,K) = ———=(C (1 + ike,m)e M £ O (1 — ike,T)e™eeT)
* The Bunch-Davis vacuum: Cy =1and C_ =0
* Non-Bunch-Davis vacuum: For example, a small ('_  (Martin, Brandenberger, 00)

* Bispectrum

1 1
by + ko + ks k4 ko — ks

+ perm.

In 3pt:

Peaks at folded triangle limit

ki 4+ ko — ks =0 and cyclic




» Problems:
Infinite peak at folded limit is unphysical;
Non-BD vacuum put in by hand. E.g. the transition from BD
to non-BD does not solve the equation of motion.

Need a self-consistent prototypical example of non-BD case.

» Feature models: Non-BD vacuum can be easily generated:

* General solution: linear superposition of positive and negative energy mode
* Positive energy mode: asymptotes to BD vacuum
* Any disturbance from features will introduce the other component.

Analytical examples:

Sharp feature: (Bean, X.C., Hailu, Tye, Xu, 08)
Periodic features: (Flauger, McAllister, Pajer, Westphal, Xu, 09)

But, amplitude of the non-BD component is small, so neglected in previous examples.



A Small By-Product Playing a Large Role

(X.C., 10)

* A small non-BD component in the resonant model:

RPN =13 (f)“ exp [z (}} Ink + p_)] : ﬁ [El‘f (m

l

small amplitude

* Enhancement

General single field

3 :
. a’e 1

S3 D dtdPr | —— [ = —
H (2 (2

Deeper inside horizon

2H
7(T+

w

resonant point

Interaction terms with least
slow-roll suppression

20\ sy 3ate /1 5 (1
15)‘ T (rzi)“ *(—

—— factors of w/H > 1

1) <<0c>2]



Folded Resonant Non-Gaussianity ¢ o,

* Three effects synthesized:

Resonant mechanism, non-BD vacuum, non-canonical kinetic terms

* Amplitude:
o Ae 1 (w)-5/2 Ac, 1 (w).a/z
] ——= | = or — [ — ﬂ
NL e ¢2\H cs 2 \H ‘
fold-res AE 1 W\ 7/2 or 5/2 ACS 1 W\ 7/2 or 5/2
)T 25
e cs \H cs 5 \H

Non-BD induced non-G can become the leading effect

1/c2—1and A/X does not have to be much larger than one



Leading Bispectra Shapes and Running

A
AL
sl ’lﬂ,“'"ﬂ# H ’lf ||| ||’ ||‘|'
il IU n
o 1 |!| | |qi | |'"' |"| |n't \'1'1 4'“"\ |'ﬂ". ﬂ'_ |'n'| |
A
-02 ' ' i
Lk H'”H H{ A
o Ilm U n Iu' U | ‘u'l V| I'ul

fold-res
Sansatz - NL exp [_

ko ks | ko ks
14 =2 inl=(—-14+=+2=2
( —|—k1+k1)]sm[2 ( k1+k1+21nk1)+<p]

+ 2 perm.



Multiple Fields:

Massive Isocurvatons



Quasi-Single Field Inflation (x.C., Wang, 09,10)

> Fields generally have mass of order H
> One of them has to be tuned to be << H
Quasi-Single field models:

One inflaton m? ~ O(0.01)H?, others have m? ~ H?

Decoupled: same prediction as single field models

Coupled: can have novel implications on density perturbations



An Example: Turning Trajectory

In polar coordinates:

S = / dz/—g [ 200, 90,,9+l 9" 8,00,0 —V, (9)4’@)]
1y

Slow-roll potential

Potential for massive fields



Difference Between V;.(0) and V' (0)

V! ~ O(e)H*

ST

VI~ O(GQ)PSDH

O-UON

“uonipuod eriu|

but

but

VH ~ H2

V" can be H

V" can be 1, etc
V(U ) 1s the main source of
large non-Gaussianities.

It 1s scale-invariant
for constant turn case.



Interaction Part

* Transfer vertex

7—[% = —a’do06;

Co — QRQO

* Interaction vertex
I . 3¢.3
H, = c3a”00;

1
) 11
c3=-=-V
§

We use this transfer-vertex to compute
the 1socurvature-curvature conversion

o0 | Source of the large

non-Gaussianities

00 , \80'



Perturbation Method and Feynman Diagrams

R

O0C |
1

30 5G 30 56 . So
— W ——— AN
S(V)( )\QG
3pt

N\ 2
6) 7 " 7
» To use the perturbation theory, we need (ﬁ) <1, N7 <1.

Correction to 2pt

These conditions are not necessary for the model building,
but non-perturbative method remains a challenge.

» Choose appropriate representation of in-in formalism to cancel
9 different orders spurious IR divergences for light isocurvaton 0 < m < v2H



Intermediate Bispectra (x.c. wang, 09.10)

1y

2
S~ (&
D1
0<v<3/2

(3H/2 > m > 0)

One parameter family
of shapes lying between
equilateral and local

32—31/ int

1
2 N (01 + p3 + p3)(pipaps) 2

int o
ansatz ~— 10

(pr +pa +p3)e ¥



Physics of Large Intermediate Shapes

* Quasi-equilateral: for heavier isocurvaton m > /2H, i.e. v < 1/2

Fluctuations decay faster after horizon-exit,
so large interactions happen during the horizon-exit.

Modes have comparable wavelengths:
Closer to equilateral shape.

* Quasi-local: for lighter isocurvaton m < 2H, ie. 3/2 > v > 1/2

Fluctuations decay slower after horizon-exit,
so non-G gets generated and transferred
more at super-horizon scales.

Closer to local shape (explained in next page).

In m— 0, ie v — 3/2 limit, recover the local shape behavior.



Multiple Fields:

Massless Isocurvatons



Physics of Large Local Shape

* Generated by modes after horizon exit, in multifield inflation
» Isocurvature modes —> curvature mode

> Patches that are separated by horizon evolve independently (locally)

(Starobinsky, 85; Sasaki, Stewart,95;

- 5 N 2
ON = 0N, + fnr(ON,) Lyth, Rodriguez, 05)

Local in position space  —> non-local in momentum space
So, the shape peaks at squeezed limit.

* For example, in curvaton models;
(Lyth, Ungarelli, Wands, 02)

modulated reheating;
(Dvali, Gruzinov, Zaldarriaga,03; Kofman,03)

turning trajectory. 1o "

(Vernizzi, Wands, 06; Rigopoulos, Shellard, van Tent, 06) —10 < fyit < 74
(WMAP7, 10)



Conclusions

Using primordial non-Gaussianities to probe early universe

Different inflationary dynamics can imprint distinctive signatures in non-G;

No matter whether the primordial nonG will turn out to be observable or not,
detecting/constraining them requires a complete classification of their profiles.



Conclusions

Using primordial non-Gaussianities to probe early universe

Classification:

* Non-canonical kinetic term: Equilateral shape

* Sharp feature: Sinusoidal running

* Periodic features: Resonant running

* Negative energy non-BD vacuum: Folded shape + running
* Massive isocurvatons: Intermediate shapes

* Massless i1socurvaton: Local shape



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

