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Concordance Cosmology

e Requires initial perturbations
¢ Does not say where these perturbations come from
* Does not explain flatness, homogeneity etc.
¢ |[nflationary sector
e \Why we are here (here in Allahabad, not just anthropics!)
* |nsight into primordial universe and superleV scale physics

e Concordance cosmology looked at tree: we explore the roots.
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ow Do We Think About Features?

e Zeroth message (coming from many directions)
e Almost infinite number of “features” we can add
¢ First message: Analyze features self-consistently
¢ c.g. 2 point + 3 point; <EE> and <ET> as well as <TT>
e Second message: Do we have a model?
e |Inflation / primordial universe coupled to rest of cosmology.
e How do we select features? What does a “detection” mean?

e How do we perform a self-consistent analysis?
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What We All Know...

e |nflationary perturbations are a function of the potential
e Minimal inflation: potential defines the model
e Also kinetic term, coupling to gravity, other fields.
e MANY inflationary models

e To make predictions we need to know ¢(k)

e i.e. mapping from field value to (comoving) scale in sky




The duration of inflation
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What happens after inflation®

e During inflation, universe cold
e Almost (no) particles

e Successful inflationary model must reheat
¢ Take energy from inflaton; convert to standard model states
e Hard limit: must reheat by MeV scales (nucleosynthesis, V)
e But inflation is (potentially) at GUT scales

¢ Huge range of scales; largely unknown particle physics
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Connecting measurements to model

/ Reheat temperature can vary
from GUT scale (10" GeV) to
nucleosynthesis scale (1 MeV)!

Resulting uncertainty in
predictions at a given “pivot”
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Waiting for Thermalization

* |n simple models, thermalization is naturally slow

e Inflaton-other field couplings small (to protect slow roll)

e Although can get nonlinearity [Easther, Gilmore, Flauger]
¢ Parametric resonance, rapid thermalization

e But may generate massive meta-stable states (oscillons?)
e Moduli domination? (plus thermal inflation)
e Cosmic string networks

e Kination




Matching Equation

k k
e Connects horizon entry and exit =
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e Assume long matter dominated phase (GUT - TeV) AN ~ 9

e General equation of state, to MeV scale AN ~ 30




Spectral Parameters

e Primordial spectrum specified by empirical parameter

L ns(k)—1
o, (£)
Ko

k dns(k)
o S k‘ — S k S 10 o o e , as p—
ns(k) = ns(ko) +a g<k0>+ dlog k
* x is the running: |ns-1| ~ N1, log(k) ~ N, & ~-N-2, 103 >|ax| >104
e Detectable with futuristic experiments

¢ \/ery futuristic if we want to discriminate between models.




gravitational wave amplitude r
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Models with r<0.01

* Detecting o: 5 x 104

e \Which model?
¢ Degenerate in ns
* Need o to within 10
e Overlap for large AN

o Will wait a long time for this
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A very, very long time...




Given that nsis a function of reheating...

® For specific inflationary model
* Measure nsand r accurately: Theory Ans= & AN ~ 0.005
e Constrain post-inflationary expansion
e Constrain physics between TeV and GUT scales
e How well can we do this?
e Mortonson, Peiris & RE [ModeCode]| arXiv:1007.4205
e Adshead, RE, Pritchard and Loeb arXiv:1007.3748

e Matters now, will matter more for Planck (+BOSS, LSST, etc)




What Do We Do About This?

e Chains for a specific inflationary model [potential]: prior

e Nk is an inflationary parameter (stand-in for @)

¢ Given a potential we deduce pend
e Constrain post-inflationary physics, given inflationary prior.
¢ | ong term project: ModeCode (w. Mortonson and Peiris)
e Starting to do with WMAP (and will really do it with Planck)
¢ “Standard” bump model already implemented

e Currently working on evidence calculation.

See: also Martin and Ringeval, MR&Trotta
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Natural Q"
N f N n
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What Does This Mean...

® |[nterpretation is subtle
¢ \We do not probe reheating (>TeV scales) on its own
¢ \We do not probe inflation on its own
e |nflation and reheating history are linked
¢ Test inflationary model + reheating history
¢ Different inflation models require different reheating histories
* Any hint about beyond TeV scale physics is worth having!

e Definitive test of models that predict inflation and reheating




What About Features?

e |nitial “feature” models were empirical

V(¢) = £ m*¢? (1—I—ctanh (¢d b))

e Adams, Cresswell and Easther astro-ph/0102236

® No a priori knowledge of location of feature on potential
e | ook at published constraints on these models

e Give range for height, width and /ocation of the step

e Usually with prior for post-inflationary expansion




During Standard Slow Roll...

e | arge field, canonical scalar field € ~ 1/N
* log(k/Kpivot) = (N-Npivot)(1 + O(g))
e How accurately have we located the feature in k?

e Much better than a factor of 2 in “.¢”

e \Whole feature covers a “few e-folds” (about a decade in k?)

e But central value localized to within a fraction of an e-fold.




3e-09 |

2.5e-09 +

2e-09 r

1.5e-09 -

0.1 1

Canonical Bump Model

10

100




Consequences...

e Bump models:
e Correlation between 2pt and 3pt well known
e But we also have a correlation between 2pt and N
e Bump put a “marker” on the smooth potential
¢ |_ess important for an empirical potential
e Since we don’t know where the bump is supposed to be
e But for a potential derived from fundamental theory...

e \WWould already have exquisite constraint on reheating




Axion Mondromy...

e |Inflationary potential: (modulation) x ¢P
* “LLong modulation” - 2 point modified, 3 point small
e “Short modulation” - 2 point standard, resonant 3 point
e Both at once...

¢ | ong modulation: now will have multiple peaks in likelihood
e So will have discrete range of options for Npivot

e Bumps are not evenly spaced in k (although correction
probably too small to matter).




Conclusions

¢ |[nflationary models coupled to post-inflationary history
e Easy to rule out bad models (since they never fit)
e But nsand r parameter space is degenerate
e Especially when we allow for post-inflationary history
e Empirical bump models
e Bump location degenerate with post-inflationary history
¢ Given feature model derived from fundamental physics

e Exquisite constraints on post-inflationary expansion




