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1. Introduction

CMB Observations
Strong constraints on inflationary models

More detailed properties of inflationary scenario
Cosmological parameters

Standard slow-roll inflation
Scale invariant spectrum, P o k(™D with n ~ 1
Gaussian

"What kind of perturbation spectra can be produced by inflation?"



Spectral Index, n = 1 + C“C]lﬂl_f:gﬂ

Relative distribution of power on various scales

Running of the Spectral Index %2

Deviation of the primordial power specturm from power law
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non-linearity in the inflaton produce weak non-gaussianity
probe of non-linear physics in the very early universe

If p(t,X) is Gaussian distributed - the Power Spectrum (Fourier
transform of 2-point correlation function)
all the odd corr. functions vanish, even corr. functions in terms of the
2-point functions

3-point correlation function is zero for the Gaussian field - sensitive to
the non-Gaussianity
harmonic transform counterpart - Angular Bispectrum

Non-linearity parameter fy,
D=0, + fyp * (Pr)?



2. Primordial Non-Gaussianity

P(y) of quantum fluctuations ¢ in the ground state of Bunch-Davies vacuum - Gaussian

= P(R) of curvatute perturbations R - Gaussian R = —[%]@
0

¢o Is the mean field ¢ = ¢pg + ¢

Non-Gaussianity can be generated when
(i) scalar fields are not free, but have some interactions,

(i) there are non-linear corrections to the relation between the primordial curvature
perturbation R and the quantum fluctuations ¢

(i) the initial state is not in the Bunch-Davies vacuum

(DNon-linear coupling - compute action to cubic order in perturbation

1 1
Cubic or higher order interaction terms yield non-Gaussianity in ¢ (Falk et al 1993)

(ii) the leading term of Taylor expansion of non-linear relation between R and ¢

Salopek & Bond 1990 Even if ¢ is Gaussian R can be non-Gaussian due to
non-linear terms in Taylor series expansion of the relation



More observationally relevant quantity, the curvature perturbation during the matter era ®

At the linear order ® = (3/5)R . The actual relation is more complicated at the
non-linear order.

d =0, + fnp P2

® ~ 1072, the secod term is smaller than he first by 10~° fx . = second term is only
0.1% of the first term for fx 7, ~ 102

tiny deviation from Gaussian fluctuations

(AT/T) « ® as AT/T = —d/3 at the linear order on very large angular scales
Non-linear corrections add terms of order unity to fn, by the time we observe it in CMB

(i) presence of particles at the beginning of inflation = departure of the initial state of
guantum fluctuations from the Bunch Davies vacuum — enhanced non-Gaussinaity



Standard single field inflation - scalar field is slowly rolling down the potential
Hubble parameter H, Inflaton Potential V' and Field - changing slowly

fnvr small  O(e,n) — 10~2 or smaller
(Salopek & Bond 1990, Falk et al. 1993, Gangui et al. 1994, Maldacena 2003, Seery &
Lidsey 2005)

How can a large fy be generated?

break either the slow-roll or single field concept!!

More general models — multiple scalar fields, features in inflaton potential, non-adiabatic
fluctuations, non-canonical kinetic terms, deviations from Bunch-Davies vacuum
—— substantially higher amounts of non-Gaussianity
(Bartolo et al. 2004, for a review and references therein)



3. Inflaton Potential with a localised feature

break the slow-roll temporarily

— large non-Gaussianity at certain limited scale at which the feature exists
local deviations from the approximately flat spectrum

violation of standard slow-roll conditions

additional scalar fields

corrections in the inflaton effective potential
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A. A. Starobinsky, astro-ph/9808152

[] a jump in the relevant quantity, [A] = A(po +0) — A(po — 0)

[V]#0
A step in the effective potential V' (y)
- bump modulated by strong oscillations in the primordial power spectrum

[V]=0,[V]#0
A kink in the potential V' (¢) leads to a step in its slope V' ()
- power spectrum contains a step with superimposed oscillations

V]=[V]=0,[V"]#0
A sudden change in the slope of the potential leads to step in its second derivative
V7 ()
-leads to a step in the primordial spectral index ns, accompanied by small
oscillations with decreasing amplitude.



Inflationary model with a step-like discontinuity in the evo

lution of the effective mass

M. Joy, V. Sahni and A. A.Starobinsky, PRD 77, 023514 (2008)

Hybrid inflationary scenario

1 2
V(W ¢) = o (M* = M®)" + omP¢® 4+ =-¢°¢"
Effective mass of the field v
d?Vv
2 _ — 2242 _ M2

critical value ¢ = M /g
mgp >0if¢>¢candmfp <0ifp < e

The inflaton potential experiences a sudden small change in the second derivative, V"’
(the effective mass of the inflaton).



Inflationary model with a step-like discontinuity in the evolution of the effective mass

v ¢ > ¢ the only minimum of the effective potential is at ) = 0
v ¢ = ¢. waterfall - rapid cascade of ¢y towards the minimum of its potential
v ¢ < ¢ phase transitions with symmetry breaking

Resulting power spectrum has certain small oscillations superimposed on the almost flat

spectrum and the spectral index has a localised step, followed by damped oscillations.
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5. The model with a feature is tested against CMB data

CosmoMC to confront our model with the observational data from WMAP
Better fit with Angf = —3.052 compared to the best PL model with a constant ng

............

}

i

|

|

|

|

|
|
|
|

|

|

|

|

|

|

AAAAAAAAAAAAAAAAAAA

Marginalized posterior distributions for the spectral indices n1 and no

n1 slightly larger than that without a step is favoured by the data

The marginalised probability for no peaks at 0.947, while the marginalized probability for
n1 peaks at 0.97.



The probability distribution for kg (location of the feature)

A T T [ S S S N S ST S EN T S
0.002 0.004 0.006 0.008 0.01

k,(Mpc?)

The feature, should preferentially lie on large scales: the marginalized upper limit for kq
is 0.00355 Mpc—1! at 95% CL.

Main evidence for large running in the WMAP dataset comes from sufficiently low multi-

poles with I < 40.



Non-Gaussianity for the model with the feature

Chen et al. (2006) - the non-gaussianity generated for a different feature in the potential

The impact on the 3-point function is localised around the wavenumbers that are most
affected by the feature

i | My, 1
5= [ a5 | “LR+ 5067 - V(o) e
The slow roll parameters
H é
€E — —— = —
2 1T He

The power spectrum - 2-point correlation function of the curvature perturbation

3 3 .
C@eE) = [ s ket )

= dk (-3)




Non-Gaussianities «— arise from departures from nonlinear couplings - the action to
cubic order in the perturbation

Expand the full action order by order in perturbation variable (, the interaction
Hamiltonian that results from the third order action

Hine(T) = —/d?’x{aEQCC’2+a€2C(3C)2 — 2¢¢'(9¢)(9x)

€
a

a €
+§€n’CQC’ + 2—(34)(3><)(32x) + (320(8)()2}
a 4
The three-point function will be non-zero due to this interaction term. Transforming to

Fourier space

3 3 3 .
(€O0CEC00) = | é :)13 é :)23 é 753;) (k) (ke ) (Ka) itk +a-tea)




The 3-point correlation function at some time r after horizon exit - the vacuum
expectation value of the three point function in the interaction vacuum

(C(7, k1)C(T, k2)¢(T,k3)) = —i/T dr’ a ([¢(7,k1)C(T, K2)C(T, K3), Hint (17)])

TO

Quantising ¢

) = [ Eoctrnmgere.

with associated operators and mode functions, ¢(7,k) = u(7,K)a(k) +u* (7, —=k)aT (k)
3-point correlation function as a sum of integrals of the form

la o R [H uilrena) [ drefata(n)a(ra(r) + o<e3>]

1677/ 0. §R

7O

[Tuitrena) [ dren/aes(n)es <T>53<T>]

&n is either uy or duy, /dr



The integral is dominated by the range of + during which the modes leave the horizon.

5 2V
en’ = 6aH (262 — % — 86277 + 2¢3 — o eﬂ> (-10)

We compute these extra terms and study the shape and scale dependence of the
3-point function.

_ 753 3 ¢\2 zk?
(C(k1)C(k2)¢(k3)) = (2m)"0° (k1 + k2 4+ k3) <_1_OfNL(Pk) ) - (-10)




For the best fit parameter values
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Summary

The best ngf for this featured model shows an improvement by 3.052 over the
best fit obtained assuming a power law for the primordial spectrum.

Such a feature in the primordial spectrum, if exists at all, should lie on large scales
ko < 0.003 Mpc—1.

Three-point correation function for the 'mini-waterfall’ hybrid inflationary model

For the best fit potential parameter values, the non-Gaussianity associated with
the featured model is larger than those in standard slow-roll infaltion and may even
be within the range of next generation CMB experiment such as Planck.



Thank You !
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2. Background cosmology near a feature in the

potential
a step-like discontinuity in V' when ¢(tg) = ¢o at tg
smoothed in a small neighborhood of g denote by €
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potential
a step-like discontinuity in V' when ¢(tg) = ¢o at tg
smoothed in a small neighborhood of g denote by €

, 2 . .
V(e) = V(wo) + 60 V(o) + 57 [¢0 V' (o) + 0" VE] + -

. 2 .. 3 .
H(t) = Ho +tHo + o, Ho+ o Hi + -+
t2 t3

@(t)=¢0+t¢0+5¢0+§¢i—|—-“

+ denotes the value of a quantity att = tg + € = +€

¢ + B3Ho+V'(p)=0,
87G [ H?
H? = = (90 +V(90)>

Yy = —3Hopo — 3Hopo — Vi o




Slow roll parameters

871G [ H\? & , 1 |® 2
€= y N = ) C — D)
2 \H

Corrections to the slow-roll parameters

e(t) = e€o+tHp [26(2) + 2607]0]
v
+ t2H02 €0 [360 — 3no — 363 + 6€ono + "78 — ﬁ]
0

vy
n(t) = mno-+tHo [360 — 3n0 +e€0mo — N — ﬁ]
0
t2H2

+ 20 [9¢0 + 910 + 6€ + 3o no + 9In5 + 2€5 10 + 215

3 — 2e0 + 210) = — =
T3 =200+ 2m0) T N s

vy 2¢9 VY /]
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| ¢

C2(t) 3ep — 310 — M3 —

H3g
+  tHo [—9€0 + 9o + 6€5 + Ing — 3o mo — 2€0 15 + 215
Vi [2e VY
+ 3 —2e0 +2n90) —== — —
( 0 nO)Hg 8rG HO2
t2H3 2 2
+ [2760 — 2Tno — 18€j — 63n° + 45¢€0 1o
-+ 18€5 + 65 Mo + 36€0 nG — 6€g nG — 36n;
Vi vy
+ 4eg 778’ — 6773‘ — (9 — 12¢g + 24n9 + 663 + 877(2) — 4eg 778 + 72 72
0 0

2€0 V:|/:// 2€0 V:|/:///
3—4 \/ —
T ( €0 + o) 8tG Hg 8tG Hg




. : k2

- 2
the effective mass me

d?Vv dv

2 2
mZ (1) i 2¢9 V'
2 72 + tHo 2

Hg Hg 1 HS

—2e0(34+ €0 +2n0)

—4egtHp [(360 —I—E(Q)—i—

m?2 = V' when tg < 0 and mi = V" when tp > 0
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3. Perturbation spectrum and spectral index

€k = Xr/a
a

1
v (ke ) o,

solution at n < ng

V7N
TH p(b21) (kn)

Xin(N) =

9 V//

H1™ = 3 = F2
after the feature is crossed n > ng

Xout () = 27 (aH(2) (k) + 8L (o)

\Vak
2 _ 9 Y4
:U“2 - 4 H2

1,2

mn

ni(n2) the spectral index in the ‘in’ (‘out’) region.



Power Spectrum

P(k) oc Po(k) x | — |

Py(k), the power specrum of the background model

4 2 2 712 2 2
ﬁm_m - AJQ(YM1+JM1)

+ (kUO)Q {J/«QLQ (Y,u21+1 + J31+1) + ‘]3«24-1 (Ylfl + Jil)
- 2Jps o1 (Yo Yy +1 + Jug Juy4+1) }
+ 24 (kno)Ju, {JMQ (Yer Yoy +1 + Ty Jug+1) — Jpo 1 (Y,u21 + J,lQLl)}

A= p2—p

the Bessel functions are evaluated at x = k/ko



Asymptotic forms
1. Forx =k/ko > 1

A A(4pd — 5
o — B2 ~ 1— —sin(wps — 2z) + (41 )cos(w,ug—2x),
212 813
A = ps—pf.
2. Forz <1

2 + 2 sy 2(u2—p)
o — B2 ~ (p1) (ul /@) (2)

T T2(1 4 po) 2 2



1.005

o= B

0.995

0.99

| — 8] is shown as a function of z = k/kg

The relevant values of the parameters are ;1 = 1.49, us = 1.52,
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The effective spectral index ns (k)

ns(k)—lzng—l—l—

the spectral index - asymptotic forms

1. Forz =k/ko > 1

~ cos (muo — 2x ~ 1\ sin(muse — 2x

2. Forz <1



1.05

0.95

The primordial spectral index ns is shown as a function of x = k/kg for an inflationary
model in which the potential has a sudden change in its second derivative. Such a
discontinuity in V"' leads to step in ns at x ~ 1 which is followed by oscillations with
decreasing amplitude. p; = 1.49, uo = 1.52 which correspond to n; = 1.02, no = 0.96



Discontinuity in the second derivative of the inflaton poten tial (a step) leads to a
step in the spectral index

The present numerical model

- drops fromns = 1.02 at k/kog < 1tons = 0.96 at k/kg > 1. The step in ns
is accompanied by ‘ringing’ — slowly decreasing oscillations in ns about the mean
(asymptotic) value of ng = 0.96

Running of the spectral index



Inflationary model
27?7



4. Inflationary model with a step-like discontinuity in
the evolution of the effective mass

Hybrid inflationary scenario

V() = — (M? = xp?)% + -m26? + T 22
4\ 2 2
Effective mass of the field v

d?V
my, = d—wQ\w:o =g’¢* — M?

critical value ¢. = M /g

mfb>0if¢>¢candmfb<0if¢<¢c



v ¢ > ¢ the only minimum of the effective potential is at ) = 0
v ¢ = 0 waterfall - rapid cascade of 1) towards the minimum of its potential

v ¢ < ¢. phase transitions with symmetry breaking



before the phase transition

and 82V /9¢? = m?

at the instant of transition

V(de)

Y =0

M4 2 12
L e

2

= %(14—04)

4\



Condition for slow-roll inflation - prior to the transition

3\ mmyp

M? > .
21 (14 «a)l/2

Soon after the transition
¢ < M/g, *=(M?—g?¢?)/\

92 M2
A

gtet

2
)¢—4)\

V($) = 5 (m? +

slow-roll remain valid immediately after the transition

N~

ﬂ(l—i—a)

> 1
agmp
|02V /0y? L : iy
72 > 1 applied imediately after the transition
2
M3 < Ammap
(1+ )2




Spectral Index

before the transition

after the transition

1 2 — 4 2
ng —1 = (gmp) a —3( 2 )
27 M 1+ « 1+ «

the inflationary spectrum on large scales has a red (blue) tilt if o > 1/2 (e < 1/2)
a = 1/2 results in precise scale-invariance for the initial spectrum, n; =1

Total change in the spectral index during the course of the transition

9 2
AnEnl—ngz (gmp) .

mT(l+a) \ M

« must not be too large since otherwise n; ~ no
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The spectral index just before (n1) the phase transition in hybrid inflation and
immediately after it (n2), is shown as a function of o = 2Am? /g% M?
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Spectral indices for perturbations generated just before (n1) and immediately after (ns)
the phase transition in hybrid inflation



a and gmp /M are also related to the number of inflationary e-folds which take place
after the phase transition has occurred

8 $c
mp Pend 14

M \? 0! «a
R 1—(1—|——)log .
gmp 2 2+«

Values of parameters (M, m, g) ?

comparing the inflationary curvature fluctuation on large scales with the observed CMB
fluctuation



4 year COBE data implies, for an LCDM Universe
Bunn & White (1996)

Sy = 1.91x10~

where f(Q2.,) =

setting N’ = 60 and \ = 0.1, for a spatially flat LCDM universe with ©2,,, = 0.22 and

5 exp [1.01(1 — n)]
\/1 + f(Qm)r

0.75 — 0.13Q%

Q,0-870.0510g92m 11— 0.18(1 — n)Qp — 0.03rQp} ,

Qx = 0.78,
o g M /myp m/myp
1 3.09018 x10~% | 8.29911 x10~% | 5.73456 x10~7
0.5 | 2.97899 x10—4 | 7.50167 x10~— % 3.53344 107
0.25 | 2.68416 x10~% | 6.29546 x10—4 | 1.88926 x10— 7




A model in which inflaton potential experiences a sudden change in its second
derivative

Background cosmology near the feature in the potential is studied. The small
corections in the effective mass of the inflaton filed is obtained.

Exact solution for the density perturbation spectrum is obtained and it is found that
the solution has a quasi-flat power spectrum with a change of slope (step in ng )
which occurs at some scale and is modulated by characteristic oscillations.

A field theoretic model which can give rise the rapid change in V"’ is discussed.
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