Multifield Dynamics
in D-brane Inflation




Inflation is sensitive to Planck-scale physics, and string theory
equips us to compute Planck-suppressed contributions to the
inflaton action.

The resulting models generically involve a number of light
fields in a complicated potential.

Key question: what is the characteristic dynamics of N fields
in a ‘random’ potential?

Detailed study of a string theory toy model with N=6 reveals
Interesting phenomena that are plausibly, and testably,
general.



Background and motivation
 Inflation and Planck-scale physics
* Moduli and inflation in string theory
 Inflation in a random potential
Lamppost: D-brane inflation

« Setup

« Results: scaling behavior

Open problems






Inflation provides a beautiful causal mechanism to
generate the observed CMB anisotropies and distribution
of large-scale structure.

Inflation is sensitive to Planck-scale physics: Planck-
suppressed operators generically make critical
contributions to the dynamics.

This provides a remarkable opportunity to probe aspects of
the ultraviolet completion of gravity through observation.

To make meaningful use of this connection, we should:

— Compute these Planck-suppressed contributions to the inflaton
action in string theory

— Search for characteristic properties: “what kind of inflation is natural
in string theory?” (contrast “can | realize inflation of type X in string
theory”).



If we begin with a UV-complete theory, we

derive an effective description by integrating

out the massive fields (M>A).

Otherwise, we parameterize our ignorance of the
UV theory by writing most general EF T consistent
with (postulated) symmetries.

Result: non-renormalizable interactions
among light fields induced by integrating out heavy
fields, e.q.
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Planck-sensitivity of inflation
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For large inflaton excursions, A¢ > My , one must control
an infinite series of corrections, with arbitrarily large A.



Often in particle physics we are insensitive to
effects arising at a sufficiently high cutoff A.

But for inflation, even A=M; is not high enough:
even Planck-mass d.o.f. can substantially correct
the inflaton action.

Moreover, we know that some new d.o.f. must
appear at or below the Planck scale.

So, we should carefully examine Planck-
suppressed contributions to the inflaton action in a
theory of quantum gravity.
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|. Invoke a symmetry strong enough to forbid all such

contributions.
* i.e., forbid the inflaton from coupling to massive d.o.f.

Freese, Frieman, Olinto 1990

Arkani-Hamed, Cheng, Creminelli, Randall 2003
Kallosh, Hsu, Prokushkin 2004

Dimopoulos, Kachru, McGreevy, Wacker 2005
Conlon & Quevedo 2005

L.M., Silverstein, Westphal 2008

Flauger, L.M., Pajer, Westphal, Xu 2008

. Enumerate all relevant contributions and determine

whether fine-tuned inflation can occuir.
* i.e., arrange for cancellations.

Baumann, Dymarsky, Klebanov, L.M., 2007
Baumann, Dymarsky, Kachru, Klebanov, L.M., 2008, 2009, 2010
Agarwal, Bean, L.M., Xu, to appear.






In general, the contributions of interest arise from
integrating out massive fields.

In string theory, the contributing massive fields
include stabilized moduli.

So we should consider the spectrum and couplings
of moduli in string theory.



« String compactifications typically include many moduli. If
massless, these are very problematic.

« Significant progress in the past decade: in flux
compactifications, most moduli obtain masses.

want: light inflaton, Planck-mass moduli
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String compactifications typically include many moduli. If
massless, these are very problematic.

Significant progress in the past decade: in flux
compactifications, most moduli obtain masses.

But, these masses are finite!

want: light inflaton, Planck-mass moduli get: most masses near H
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« String theory strongly motivates scenarios involving many
light fields whose potentials are controlled by Planck-
suppressed contributions.

« Key question: when inflation arises in this context, what are
its characteristic properties?



« String theory strongly motivates scenarios involving many
light fields whose potentials are controlled by Planck-
suppressed contributions.

« Key question: when inflation arises in this context, what are
its characteristic properties?

e.g.,
— what is the probability of N, e-folds?
— are the inflating trajectories smooth or bent?
— do features often arise in the last 60 e-folds?
— how are the CMB observables correlated with N_?

And, how do the above characteristics depend on the
number of light fields?



 For N=1, many thousands of papers, but no simple
answers: dynamics depends on the details of the
potential.

« Simplifications at large N are commonplace in field
theory and string theory (e.g., ‘t Hooft limit).

« Can we hope for something similar here? Might the
characteristic properties depend only weakly on the
details of the potential when N is large?



« Suppose we construct an ensemble of NxN matrices by
drawing the entries of each matrix from a given
distribution €2 .

* Forlarge N, we can predict the spectrum of eigenvalues
to excellent accuracy, and the result is independent of Q.



« Suppose we construct an ensemble of NxN matrices by
drawing the entries of each matrix from a given
distribution €2 .

* Forlarge N, we can predict the spectrum of eigenvalues
to excellent accuracy, and the result is independent of Q.

e.g., suppose A is an NxN matrix whose entries Aj;
are drawn from a Gaussian distribution with mean
zero and variance o4/N.
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Let M =A + AT . oG
Then the spectrum of M is zzzj
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 the distribution (2 need not be Gaussian
* the mean of (2 need not be small
* the entries can have some correlations

General result:

If M is a matrix whose constituent entries are drawn from any
distribution with appropriately bounded moments, then in the
large N limit the spectrum of M approaches that of a matrix
whose constituent entries have a Gaussian distribution with
mean zero. Z.D.Bai

This sort of universality is a strong motivation for studying the
dynamics at large N.



In N-flation, one has hundreds of axions whose
collective excitation drives inflation.

Each individual axion mass depends on many
details of the stabilized compactification, but the
spectrum of masses is simple!
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A simple N-field model




« At strong coupling, operator dimensions can change
substantially. Should we restrict to integers? Does it
matter?

» Also, we do not have a solid prior for the distribution — does
it matter whether it is Gaussian?

« Are all possible terms included with equal weight?

Our approach:

 Work in a string theory construction where we can explicitly
compute the form of the potential.

« ‘Experimentally’ check for dependence on the distribution.

« Although N will not be very large, we will find some universal
behavior.



String theory motivates considering many light
fields governed by a complicated potential
Induced by Planck-suppressed couplings.

We will study a specific example of this sort and
search for simplifications when the number of
fields, N, is large.



Background and motivation
 Inflation and Planck-scale physics
* Moduli and inflation in string theory
 Inflation in a random potential
Lamppost: D-brane inflation

¢ Setup

« Results: scaling behavior

Open problems



warped throat
(e.g. Klebanov-Strassler)

CY orientifold, with
fluxes and nonperturbative W

anti-D3-brane

Dvali&Tye 1998

Dvali,Shafi,Solganik 2001
Burgess,Majumdar,Nolte,Quevedo,Rajesh,Zhang 2001
Kachru, Kallosh, Linde, Maldacena, L.M., Trivedi, 2003



The inflaton field space




» Diverse contributions: Coulomb interaction, curvature
couplings, couplings to the moduli in the Kahler potential
and in the superpotential.

« Tool: AdS/CFT allows us to write an arbitrary contribution to
the inflaton Lagrangian, encompassing all the above effects,
in terms of a supergravity solution.

« So we found the most general supergravity solution for this
system and read off the structure of the potential.

Baumann, Dymarsky, Klebanov, L.M., 2007
Baumann, Dymarsky, Kachru, Klebanov, L.M., 2008, 2009, 2010



Table 7: Matching between supergravity (G_ flux modes and CF'T" operators.

) 71 g2 R Operator Multiplet Type Flux Series

’ 22 =1 [SY [Tr(AB)]42 V.1 chiral I

3 0 0 2 (D915, Tr(W, {21) + W2 )b V.IV chiral 11

I 1 11 [T1]s [Tr(Wa(AB))]s G.I chiral I1

4 0 0 0 (DY ]2 [Tr(W (21) W (22))]92 V.I11 chiral *

4 0 1 0 [«L29]4 Tr(Wada)le G.I+G.IIT  semi-long II

4 1 0 0 [5L%0)e [Tr(WaJb)]e G.I+G.III  semi-long II

4 1 1 0 [52] 92 [Tr(AB)?]p2 V.1 chiral I
v2e—1 1 1 =2 = [Tr(f)]e2 V.1 long I

5 R (@1, [-I&(W(?” V(’g) ) (AB)]b V.IV chiral 111

9 1 1 T 1 T 7 T T

% % % —1  [oJYee [Tr )]92 V.1 semi-long I

% % % -1 [pJYee [Tr(Jb AB )] o2 V.1 semi-long I

5! 1 1 2 (T34 [Tr(W,(AB)?)]g G.1 chiral IT

5 0 1 2 %% [E((WE +WaE)Ju)l VIV semilong 111

5 1 0 2 [61°%b [Tr((W (21) + W (2))Jb)] V.IV semi-long 11

V28 I 1 0 — [Tr(Waf)le G.I+G.III long II

vao—-1 0 2 =2 = [Tr(fa)lez V.1 long I
Vao—1 2 0 =2 - [Tr(f2)] 62 cf. Ceresole, Dall’Agata, D’Auria 1999




Spectrum of the D3-brane potential




Single-field phenomenology:
Inflection point inflation
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We draw the coefficients c; from a Gaussian distribution,
generating an ensemble of potentials. (We will later check
that the choice of distribution is not significant.)

We draw a potential from the ensemble, choose a random
initial condition (with appropriately bounded kinetic energy),
and find the full six-field evolution of the homogeneous
background.

We stare at the results and try to identify “robust observables”,
I.e. quantities that depend very weakly on the details of the
distribution, but may depend on N.
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Success rate vs. number of e-folds
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Success rate is a power law
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Normalization, with caveats




The tilt
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Open problems/work in progress




String theory strongly motivates considering inflation
models with many light fields whose potential is
controlled by Planck-suppressed contributions.

We studied a particular case with N=6 fields (D3-brane
inflation), where the structure of the inflaton potential
could be computed explicitly.

Drawing the Wilson coefficients from various
distributions, we constructed ensembles of potentials.

We then studied the typical behavior in these
ensembles.

We find scaling behavior: the probability of N, e-folds of
inflation is a power law, N3



« The probability of inflation increases as a power law in
the number of fields.

* |t would be interesting to extend our results to more
general settings.

 We did not yet study the perturbations, but there is
plausibly a rich story involving bending trajectories,
transients, and ultimately primordial features and non-
Gaussianities.



