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• Inflation is sensitive to Planck-scale physics, and string theory 
i t t Pl k d t ib ti t thequips us to compute Planck-suppressed contributions to the 

inflaton action.
• The resulting models generically involve a number of light g g y g

fields in a complicated potential.
• Key question: what is the characteristic dynamics of N fields 

i ‘ d ’ t ti l?in a ‘random’ potential? 
• Detailed study of a string theory toy model with N=6 reveals 

interesting phenomena that are plausibly, and testably,interesting phenomena that are plausibly, and testably, 
general.
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• Inflation provides a beautiful causal mechanism to 
generate the observed CMB anisotropies and distribution 
of large scale structureof large-scale structure.  

• Inflation is sensitive to Planck-scale physics: Planck-
suppressed operators generically make critical 
contributions to the dynamics.

• This provides a remarkable opportunity to probe aspects of 
the ultraviolet completion of gravity through observationthe ultraviolet completion of gravity through observation.

• To make meaningful use of this connection, we should:
– Compute these Planck-suppressed contributions to the inflaton p pp

action in string theory
– Search for characteristic properties: “what kind of inflation is natural 

in string theory?” (contrast “can I realize inflation of type X in string g y ( yp g
theory”).



If we begin with a UV-complete theory, we 
derive an effective description by integrating MP
out the massive fields (M>). MS

Otherwise, we parameterize our ignorance of the 
UV theory by writing most general EFT consistent

Result: non-renormalizable interactions

H


MEFT

UV theory by writing most general EFT consistent      
with (postulated) symmetries.

Result: non-renormalizable interactions 
among light fields induced by integrating out heavy 
fields, e.g.

MEFT
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For small inflaton excursions,                    ,  one must control 
corrections withcorrections        with           .

For large inflaton excursions,                      , one must control 
i fi it i f ti ith bit il l Δan infinite series of corrections, with arbitrarily large Δ.



Often in particle physics we are insensitive to 
effects arising at a sufficiently high cutoff . MP

But for inflation, even =MP is not high enough: 
even Planck-mass d.o.f. can substantially correct

MS

even Planck mass d.o.f. can substantially correct 
the inflaton action.

Moreover we know that some new d o f must

H


MEFTMoreover, we know that some new d.o.f. must 
appear at or below the Planck scale.

MEFT

So, we should carefully examine Planck-
suppressed contributions to the inflaton action in a 
theory of quantum gravity.t eo y o qua tu g a ty



I. Invoke a symmetry strong enough to forbid all such 
contributionscontributions.

• i.e., forbid the inflaton from coupling to massive d.o.f.
Freese, Frieman, Olinto 1990
Arkani-Hamed Cheng Creminelli Randall 2003Arkani-Hamed, Cheng, Creminelli, Randall 2003
Kallosh, Hsu, Prokushkin 2004
Dimopoulos, Kachru, McGreevy, Wacker 2005
Conlon & Quevedo 2005
L M Silverstein Westphal 2008

II Enumerate all relevant contributions and determine

L.M., Silverstein, Westphal 2008
Flauger, L.M., Pajer, Westphal, Xu 2008

II. Enumerate all relevant contributions and determine 
whether fine-tuned inflation can occur.

• i.e., arrange for cancellations.   (this talk)
Baumann, Dymarsky, Klebanov, L.M., 2007
Baumann, Dymarsky, Kachru, Klebanov, L.M., 2008, 2009, 2010
Agarwal, Bean, L.M., Xu, to appear.
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In general, the contributions of interest arise from 
integrating out massive fields.g g

In string theory, the contributing massive fields g y, g
include stabilized moduli.  

So we should consider the spectrum and couplings 
of moduli in string theory.



St i tifi ti t i ll i l d d li If• String compactifications typically include many moduli.  If 
massless, these are very problematic.

• Significant progress in the past decade: in fluxSignificant progress in the past decade: in flux 
compactifications, most moduli obtain masses.

want: light inflaton, Planck-mass moduli
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St i tifi ti t i ll i l d d li If• String compactifications typically include many moduli.  If 
massless, these are very problematic.

• Significant progress in the past decade: in fluxSignificant progress in the past decade: in flux 
compactifications, most moduli obtain masses.

• But, these masses are finite!

want: light inflaton, Planck-mass moduli get: most masses near H

MP M

hard to achieve

MP

Mmoduli

MP

Mmoduli

M
unnatural

H
Mφ

H

Mφ



• String theory strongly motivates scenarios involving many 
light fields whose potentials are controlled by Planck-
suppressed contributions.

• Key question: when inflation arises in this context, what are 
its characteristic properties?its characteristic properties?  



• String theory strongly motivates scenarios involving many 
light fields whose potentials are controlled by Planck-
suppressed contributions.

• Key question: when inflation arises in this context, what are 
its characteristic properties?its characteristic properties?  

e.g.,
– what is the probability of Ne e-folds? p y e

– are the inflating trajectories smooth or bent?  
– do features often arise in the last 60 e-folds?
– how are the CMB observables correlated with Ne?
And, how do the above characteristics depend on the 

number of light fields?number of light fields?



• For N=1, many thousands of papers, but no simple 
d i d d th d t il f thanswers: dynamics depends on the details of the 

potential.
• Simplifications at large N are commonplace in fieldSimplifications at large N are commonplace in field 

theory and string theory (e.g., ‘t Hooft limit).
• Can we hope for something similar here? Might the 

h i i i d d l kl hcharacteristic properties depend only weakly on the 
details of the potential when N is large?



• Suppose we construct an ensemble of NxN matrices by 
drawing the entries of each matrix from a given 
distribution .

• For large N, we can predict the spectrum of eigenvalues 
to excellent accuracy and the result is independent of to excellent accuracy, and the result is independent of .



• Suppose we construct an ensemble of NxN matrices by 
drawing the entries of each matrix from a given 
distribution .

• For large N, we can predict the spectrum of eigenvalues 
to excellent accuracy and the result is independent of to excellent accuracy, and the result is independent of .

e.g., suppose A is an NxN matrix whose entries Aij 

are drawn from a Gaussian distribution with mean 
zero and variance 2

Let M = A + AT

2 21( ) 4 

Let M = A + AT .  
Then the spectrum of M is

2 2
2( ) 4

2
   


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• the distribution  need not be Gaussian 
• the mean of  need not be small 
• the entries can have some correlations

General result:

If M is a matrix whose constituent entries are drawn from any
distribution with appropriately bounded moments, then in thepp p y ,
large N limit the spectrum of M approaches that of a matrix 
whose constituent entries have a Gaussian distribution with 
mean zero Z D Baimean zero.

This sort of universality is a strong motivation for studying the 
d i t l N

Z.D.Bai

dynamics at large N.



In N-flation, one has hundreds of axions whose 
collective excitation drives inflation.
Each individual axion mass depends on many 
details of the stabilized compactification, but the 
spectrum of masses is simple!spectrum of masses is simple!

ab
ili

ty
 

pr
ob

a

mass300N  Easther & L.M., 2005
Komatsu et al., 2010
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Arguably simplest model: Gaussian random landscape.

H d k li (i t ) di i– Have used weak-coupling (integer) dimensions
– Wilson coefficients             can be drawn from some 

distribution, e.g. a Gaussian.distribution, e.g. a Gaussian. 
– The special case J=2 was covered by RMT.



At t li t di i h• At strong coupling, operator dimensions can change 
substantially.  Should we restrict to integers? Does it 
matter?

• Also, we do not have a solid prior for the distribution – does 
it matter whether it is Gaussian?  
A ll ibl i l d d i h l i h ?• Are all possible terms included with equal weight?

Our approach:Our approach: 

• Work in a string theory construction where we can explicitlyWork in a string theory construction where we can explicitly 
compute the form of the potential.

• ‘Experimentally’ check for dependence on the distribution.
• Although N will not be very large, we will find some universal 

behavior.



String theory motivates considering many light 
fi ld d b li t d t ti lfields governed by a complicated potential 
induced by Planck-suppressed couplings.

We will study a specific example of this sort and 
search for simplifications when the number of p
fields, N, is large.
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warped throatwarped throat
(e.g. Klebanov-Strassler)

CY orientifold, with 
fluxes and nonperturbative W
(KKLT 2003)(KKLT 2003)

anti-D3-brane
D3-brane

Dvali&Tye 1998
Dvali,Shafi,Solganik 2001
Burgess,Majumdar,Nolte,Quevedo,Rajesh,Zhang 2001
Kachru, Kallosh, Linde, Maldacena, L.M., Trivedi, 2003



S2
S3 “T1,1”



• Diverse contributions: Coulomb interaction, curvature 
couplings, couplings to the moduli in the Kähler potential 
and in the superpotential.

Tool: AdS/CFT allows us to write an arbitrary contribution to• Tool: AdS/CFT allows us to write an arbitrary contribution to 
the inflaton Lagrangian, encompassing all the above effects, 
in terms of a supergravity solution.  

• So we found the most general supergravity solution for this 
t d d ff th t t f th t ti lsystem and read off the structure of the potential.

Baumann, Dymarsky, Klebanov, L.M., 2007
Baumann, Dymarsky, Kachru, Klebanov, L.M., 2008, 2009, 2010



cf. Ceresole, Dall’Agata, D’Auria 1999



We will keep the 724 terms with Δ<4.

Baumann, Dymarsky, Kachru, Klebanov, L.M., 1001.5028



1 3/2 2( )V r c r c r c r   1 3/2 2( )V r c r c r c r   

Baumann, Dymarsky, Klebanov, L.M., 2007Baumann, Dymarsky, Klebanov, L.M., 2007
Panda, Sami, Tsujikawa, 2007
Ali, Chingangbam, Panda, Sami, 2008
Ali, Deshamukhya, Panda, Sami, 2010
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W d th ffi i t f G i di t ib tiWe draw the coefficients ci from a Gaussian distribution, 
generating an ensemble of potentials.  (We will later check 
that the choice of distribution is not significant.)g )

We draw a potential from the ensemble, choose a random 
initial condition (with appropriately bounded kinetic energy), 
and find the full six-field evolution of the homogeneous 
background.g

We stare at the results and try to identify “robust observables”, 
i.e. quantities that depend very weakly on the details of the 
distribution, but may depend on N.



Ne

A typical successful trajectory.  The angles 
evolve initially and then settle into an angularevolve initially and then settle into an angular 
minimum.



Ne

100 ith N 60100 cases with N>60
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• Perturbations.  

• Counting the likelihood of features.

• Can DBI inflation arise by chance?

• (In)significance of the truncation to Δ<4

• Extension to more general, higher-dimensional systems.



• String theory strongly motivates considering inflation 
d l ith li ht fi ld h t ti l imodels with many light fields whose potential is 

controlled by Planck-suppressed contributions.
• We studied a particular case with N=6 fields (D3-braneWe studied a particular case with N 6 fields (D3 brane 

inflation), where the structure of the inflaton potential 
could be computed explicitly.
D i h Wil ffi i f i• Drawing the Wilson coefficients from various 
distributions, we constructed ensembles of potentials.

• We then studied the typical behavior in theseWe then studied the typical behavior in these 
ensembles.

• We find scaling behavior: the probability of Ne e-folds of 
3inflation is a power law, Ne

-3



• The probability of inflation increases as a power law in 
th b f fi ldthe number of fields.

• It would be interesting to extend our results to more 
general settings.general settings.

• We did not yet study the perturbations, but there is  
plausibly a rich story involving bending trajectories, 

i d l i l i di l f dtransients, and ultimately primordial features and non-
Gaussianities.


