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In this talk I'll consider possible deviation from a Bunch
Davies Vacuum condition at the onset of inflation.
Such modifications will have consequences for the primordial
in-in matrix elements such as the primordial bispectrum.
The source of (large) non-Gaussian effects could be traced to
non-zero particle density during inflation (excited states).
Constraining the resulting bispectra will constrain deviations
from BD.

The presence of oscillations (due to a mixing of positive and
negative plane wave solutions) makes it hard to constrain
these bispectra. Mode expansion and extraction could offer a
possibility.
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Standard way to choose 1nitial state (during inflation) 1s as

follows:
-At small enough (subhorizon) scales space 1s flat

-In the limitn — —oo the solution of the mode equation that
approaches a positive plane wave 1s known as Bunch Davies
(BD) vacuum 1n de Sitter.

Given 1nflation certainly 1s an effective description it seems
problematic to consider a state of which the definition requires us
to go to arbitrarily small scales/high energies.

A proposal is to define an initial state at the cutoff time 7g(k) ,
the earliest time our effective theory can be trusted.

v = agpuy(n) + Brur(n) 3 =0+« BD
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This choice has consequences for the primordial spectra.

For the power spectrum:
1
[N (k)| BT (k) = B/ (k) = au

P(k) o |vg|? wp = e |uy|
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This choice has consequences for the primordial spectra.

For the power spectrum:

NEP = g 0= Nk =
P(k) x \’Uk|21 wp = e |uy|
P(k) x TR < (14 [b(k)|? 4+ e*b(k)* + e 2°b(k))|ux|?)
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For the power spectrum:

P(k) ~ Ppp(k) (1 + 2|b(k)|*cos(a(k) + 5)) .
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This choice has consequences for the primordial spectra.

For the power spectrum:
P(k) ~ Ppp(k) (1+ 2|b(k)|*cos(a(k) + §)) .
For the bispectrum:

BP" (k1 ko, k3) o< |B|(Ae/H*)"F(k1, ko, ks) x L(cos(kA./H* + 6))

Chen et al 2007, Holman&Tolley 2008, Meerburg++ 2009a, 2009b
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This choice has consequences for the primordial spectra.

For the power spectrum:
P(k) ~ Ppp(k) (14 2]b(k)|*cos(a(k) + 9)) .

For the bispectrum:

BP"(ky, ko, ks) o< | B|(Ae/H*)"F(ky, ko, k) x L(cos(kA./H* + 6))

Amplitude

Chen et al 2007, Holman&Tolley 2008, Meerburg++ 2009a, 2009b
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This choice has consequences for the primordial spectra.

For the power spectrum:
P(k) ~ Ppp(k) (14 2]b(k)|*cos(a(k) + 9)) .

For the bispectrum:

BP"(ky, ko, ks) o< | B|(Ae/H*)"F(ky, ko, k) x L(cos(kA./H* + 6))

Amplitude Scale invariant

part

Chen et al 2007, Holman&Tolley 2008, Meerburg++ 2009a, 2009b
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This choice has consequences for the primordial spectra.

For the power spectrum:
P(k) ~ Ppp(k) (14 2]b(k)|*cos(a(k) + 9)) .

For the bispectrum:

BP"(ky, ko, ks) o< | B|(Ae/H*)"F(ky, ko, k) x L(cos(kA./H* + 6))

Amplitude Scale invariant Sl R R

o (k) ~ A/ H*

Chen et al 2007, Holman&Tolley 2008, Meerburg++ 2009a, 2009b
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Example: Non-canonical single field inflation + BD mod
Ly = kz’/kmaw kma,x ™ 10_1MpC_1
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Example: Non-canonical single field inflation + BD mod
Ly = kz’/kmax kma,x ™ 10_1MpC_1

Fx] =% ke T T (w’U I "‘5) SIN Wy, (wv R b —|—5) cos § —cos (wv i+l j+2 —|—5)
X — VY "max L 1 . J . j -
T1X2T3 Z] x3 2 W (a’3+1+.%+2 _1> w2 (fﬂj—|—1+':13j_|_2 _1)2 3 (mj—|—1+'wj_|_2 _1)3

J
i T T

Here we defined a frequency: w, = A./H*
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Example: Non-canonical single field inflation + BD mod
Ly = kz’/kmax kma,x ™ 10_1MpC_1

cos (wv ST IE2 z z
J J

kJ_6 1 1 T )
Fx[ = 2 mae N\° 0 L1 7 _
T1T2T3 Z] x? 2wy (w3+1+_%+2 _1) w2 (xj—|—1+f’3j—|—2 _1)2 w3 (“J’j+1::"wj+2 _1)3
J

sin wy, (wv Tt ,mH_Q —|—5) cos d —cos (wv Titl _m7+2 —|—5) )

Here we defined a frequency: w, = A./H*

0.0

Enfolded
nBD 1 3
NL 2 w;, | B
kl — kmax

Meerburg++ 2009a, 2009b
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Theoretical and Observational:

-Transplanckian
-Backreaction

-Power Spectrum
-Bispectrum

Transplanckian:

Can not excite modes beyond scale associated with A..:

Br — 0V k> Aca(ng)
Backreaction:

op ~ |B]°AL +slow roll: | 3| < v/en’HMy /A;
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Observational:

Power spectrum.

1

V(o) = §m2¢2[1 + asin (5% + 5)] Pahud, Kamionkowski & Liddle, 2008

WMAP3: a<3x107° PLANCK: O(10°)

Best constraints on the largest frequencies (5 =5 x 107%)

Vo) = i [¢ +bf sin (%)] AZ (k) = A (k) (&)”3_1 [1 + 6n, cos (%)]

WMAPS: f =6.67 x 10~* and Jdns =0.17 Flauger et al, 2009a
bf <107*

BD would then be constrained as |3| < 10~

WMAP7: See talk by Christophe Ringeval. Working on that. (several models)
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Observational:

Power spectrum.

1
V(o) = §m2¢2[1 + asin (5% + 5)] Pahud, Kamionkowski & Liddle, 2008

Best cons At =lor: | Chrlstophe Rlngeval Talk!

V(6) = i [¢ + b sin (?)] AZ (k) = A% (k) (£>“S—1 [1 + 0, cos (%)]

WMAPS: f =6.67 x 10~* and Jdns =0.17 Flauger et al, 2009a
bf <107*

BD would then be constrained as |3| < 10~

WMAP7: See talk by Christophe Ringeval. Working on that. (several models)
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Observational:

Bispectrum.

-Compute full bispectrum
-Build templates (e.g. local, equilateral..)

-Easy: find a way to compare bispectra €=

How? Define correlation. Like off diagonal fisher matrix
elements 1n k-space. j A4 a
Fx*Fy — / dkldk‘zdkg L2 BF)(FY

Ax ki

BX . BY

By - By — Z hlols Plalbols _ _
Ay, 1,1.C1, O, Ol

[1,l2,l3
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Observational:

Bispectrum.

-Compute full bispectrum
-Build templates (e.g. local, equilateral..)

-Easy: find a way to compare bispectra €=

How? Define correlation. Like off diagonal fisher matrix
elements in k-space.

kikaks
Fx*FyE/ dkldk’zdkg L2 SFxFy
AL ki
Fx*Fy
C(Fx. Fy) =
(Fx, Fy) (Fx x Fx)/2(Fy x Fy)1/2

A} : tetrahedral domain; domain in which comoving
bispectrum ‘lives’: k, < kp + k. for k, > kp, k.
kaakbakc < kma,xp CL,b,C: {1,2,3} a ?é b# C
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Fx*Fy

Bispectrum C(Fx, Fy) = (Fx *x Fx)Y2(Fy x Fy)'/?2

For non-BD bispectrum (single field, non-canonical action)

> 40 |

100
Wy = P

80

A p=100,0 = 7/2

p=1000,8 = 7/2

Ly
~
p—

SN—

20 0\

"\ p=100,0 =0

000 002 004 006 008 0.10

B

Meerburg et al, 2009b
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(Besides Hadamard and weakly scale dependent for long
distance).
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What is 3? As said it is the Bogolyubov transformation.
Can it be qualified? Yes, but the derived constraints are

independent of the model that describes the transformation
(Besides Hadamard and weakly scale dependent for long
distance).

We can derive an expression for 5, that can be considered the
‘minimal vacuum modification’: each mode 1s excited separately
with minimum uncertainty in field and field momentum

It 1s known as the new physics hypersurface (NPH) scenario,
since it is derived from assuming a high energy cut off scale A.

at a time 7)o

_ t —2ikmno
= e
6k 2]-677() + 1

?
2kcsmg + 1

—21kcsno

B

€
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What is 3? As said it is the Bogolyubov transformation.
Can it be qualified? Yes, but the derived constraints are

independent of the model that describes the transformation
(Besides Hadamard and weakly scale dependent for long
distance).

We can derive an expression for 5, that can be considered the

‘minimal vacuum modification’: each mode 1s excited separately

with minimum uncertainty in field and field momentum
It 1s known as the new physics hypersurface (NPH) scenario,

since it is derived from assuming a high energy cut off scale A.
at a time 7)g

1 | 102 A,
QCSAC Cs H

B ~

Danielsson, Meerburg&JpSchaar, 2010b
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Although bounds on non-Gaussianity exist, constraints are
relatively weak (that we obtain by comparison) due to presence
of oscillations!

Excited states are not the only scenario that lead to oscillations.
We have seen today that there are several models, e.g. sharp
features, axion-monodromy, multifield . . .(more to follow)

Can we 1improve constraints by looking at oscillatory spectra?

1) It 1s helpful if the primordial spectra 1s factorizable (reduces
the number of computations), 1.e.

F(ky, ko, k3) = > f1(k:i) fa(kiv1) f3(Kiy2)

2) One could try to build a template, but there 1s another problem
arising. Both the frequency and the phase can be considered free
parameters of the theory.
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Factorization.

General question: Can we factorize?

Not trivial; for example, equilateral shape

1
X ks

has been factorized with the equilateral template, but ‘shear
luck’. Creminelli

Alternative 1s (so-called) mode expansion:

N
Fafxses ~ > " apRy(x1, 22, x2)

Fergusson et al 2009-2010
Rewrite original spectrum as a sum of functions that are

factorized from scratch and are orthonormal on tetrahedral
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INTERMEZZ0

Building the orthonormal basis.

In k space define:
T\f] = f k1, ko, k3)w(ky, ko, k3)dAy,
Ay
n + 6
L =T |x" =
v = Tt 2
1/2  7/24 1/5 - W,
| 7/24 1/5 3/20 -+ wpiq
Wn—1 Wn Wn+1 - Won—1
1 X 72 x"
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Building the orthonormal basis.

Build 3 dimensional basis:

Qn(il?, Y, Z) — 6NQ{pQ?°QS} 6 terms
n =0 — 000 n=4—>111‘n=8—>022 n=12—113|n =16 — 222|n = 20 — 024 n=24—>133‘
n=1—001ln=5—2012 n=9—013 n=13—-023|n=17 — 123 n =21 —- 015|n =25 — 124
n=2—01l1ln=6—200383n=10—004n=14 —-014jn=18 — 033|n =22 — 006 |n = 26 — 034
n=3—002n=7T—112n=11 —-112In=15—-005n =19 — 114|n =23 — 223|n =27 — 115

Orthonormalize these by Gramm-Schmidt to end
up with a set that obeys:

Rn * Rm — 5mn

PFNG 14-12-2010
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Using polynomial modes orthogonalized on the tetrahedral

domain: D o N
Frixixs ~ S:n—() on Ry (21, T2, T2)
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Using polynomial modes orthogonalized on the tetrahedral

domain:

P
=

N
Fafxszs ~ > anpRy(z1, 22, x2)

o
00

o
(o)

- o
to =N

— T
~

correlation

o
o

""""

-
----
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Using polynomial modes orthogonalized on the tetrahedral
domain:
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Using polynomial modes orthogonalized on the tetrahedral
domain:

N
Fafxszs ~ > anpRy(z1, 22, x2)
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Need many modes to achieve “good’ correlation with original
spectrum
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Using polynomial modes orthogonalized on the tetrahedral

domain:

N
Fafxszs ~ > anpRy(z1, 22, x2)
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Need many modes to achieve “good’ correlation with original
spectrum

Recall however that the correlation used to be of order 1percent!
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Maybe if we use another basis? Fourier instead of polynomials

Meerburg 2010a 12T

"t — e
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=
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it of modes F,y

Decrease number of modes necessary by a factor ~5 for resonant
bispectrum and feature bispectrum.

What about other oscillatory bispectra?

PFNG 14-12-2010

Thursday, December 16, 2010



Intro | non-BD |Constraints| Other models Modes [ End

PFNG 14-12-2010

Thursday, December 16, 2010



Intro Othermodels™ Modes [End

For non-BD bispectra it only works for a canonical single field.
For non-canonical models correlation increases faster than
polynomial but stops growing altogether after a while. Probably
because of many small features near edge of tetrahedral domain,
even at small frequency.
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For non-BD bispectra it only works for a canonical single field.
For non-canonical models correlation increases faster than
polynomial but stops growing altogether after a while. Probably
because of many small features near edge of tetrahedral domain,
even at small frequency.

However, also considered toy-spectra:

2 1 ) W1 ) W1 : Wi
= S1n - S1n -+ Sin
! k22 k2 ki + 1 ko + 1 ks + 1
1
F2 — Sin wgklkgkg

ki kg ks
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For non-BD bispectra it only works for a canonical single field.
For non-canonical models correlation increases faster than
polynomial but stops growing altogether after a while. Probably
because of many small features near edge of tetrahedral domain,
even at small frequency.

However, also considered toy-spectra:
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Not only i1s Fourier expansion more efficient, there 1s another
advantage.
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They all peak at similar mode numbers, for same shape bispectra.

And, these appear already at low mode number for high frequencies
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Not only i1s Fourier expansion more efficient, there 1s another
advantage.

Consider the modes (alpha) for different bispectra
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What does this mean?
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What does this mean?
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What does this mean?
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For some bispectra it means you would need even less modes to |
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Observationally 1t 1s even more helpful: measuring a few mode

could give an indication of:
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Observatlonally 1t 1S even more helpful measuring a few modes

could give an indication of:

-shape of primordial bispectrum

PFNG 14-12-2010

Thursday, December 16, 2010



Intro Othermodels™ Modes PFEnd

What does this mean?

- - —
nFor some blspectra it means you would need even less modes to |

{. l‘ . .ll 11 ] )ICIC ..A . 1C (O .l‘ )C (1] \l\
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-shape of primordial bispectrum
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Conclusions

-I have discussed the appearance of oscillations in the
primordial power spectrum and the bispectrum due to
excited Initial states
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-I have discussed the appearance of oscillations in the
primordial power spectrum and the bispectrum due to
excited Initial states

-The amplitude of the bispectrum could be observably large

-The observed power spectrum and bispectrum can put
constraints on these models

-The constraints are relatively weak because oscillatory spectra
are hard to measure and for bispectra they have not been
measured at all!.
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Conclusions

-I have discussed the appearance of oscillations in the
primordial power spectrum and the bispectrum due to
excited Initial states

-The amplitude of the bispectrum could be observably large

-The observed power spectrum and bispectrum can put
constraints on these models

-The constraints are relatively weak because oscillatory spectra
are hard to measure and for bispectra they have not been
measured at all!.

-Using leakage factors you can derive constraints. I have
suggested mode expansion as a way to improve constraints.
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Suggestions

-The method of mode expansion should be further investigated.
In particular it should be applied to multipole spectra. In progress
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In particular it should be applied to multipole spectra. In progress

-One could try and see 1f it possible to develop a consistency
mechanism between different spectra

-One could consider the real space correlation function.

-It would be preferable to develop a simple test that could yield
insight into whether there are oscillations/features in the first
place. In progress
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Suggestions

-The method of mode expansion should be further investigated.
In particular it should be applied to multipole spectra. In progress

-One could try and see 1f it possible to develop a consistency
mechanism between different spectra

-One could consider the real space correlation function.

-It would be preferable to develop a simple test that could yield
insight into whether there are oscillations/features in the first
place. In progress

-Parallel develop methods of detection for LSS

PFNG 14-12-2010

Thursday, December 16, 2010



Intro Other models End

Suggestions

-The method
In particular

er investigated.
ectra. In progress

-One could t _consistency
mechanism t

-One could ¢ Inction.

-It would be hat could yield
insight 1nto >s 1n the first

place. In pro

-Parallel dev

:'-J-I-l-i-lx

|
it
Jid')

ri'u’ "

PFNG 14-12-2010

Thursday, December 16, 2010



