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e AdS/CFT with cosmological singularities: gauge theorigshw
time-dep couplings and spacelike singularities

e worldsheet: null singularities and free strings
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Big-Bang singularities, strings ...

e Big Bang/Crunch singularities, time, in string theory (foyodels?
Understangpacelike, null singularities — events in time

General Relativity breaks down at singularities:

curvatures, tidal forces divergent, notions of spacetineak down.
Want “stringy” description, eventually towards smooth iojusm
(stringy) completion of classical spacetime geometry.

Previous examples: “stringy phases”dry. 2-dim worldsheet (linear sigma model) descriptions
(including time-dep versions, e.g. tachyon dynamics intéfienstable vacua), dual
gauge/Matrix theories, ...

In what follows, we’ll use (i) theAdS/CFTframework,
(i) worldsheestring spectrum analysis near null singularities.
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AdS/CFT and deformations

Bulk string theory onddS; x S° with dilaton (scalar}p = const,
5-form field strength, and metric (Poincare coords)

ds? = z%(nuyda:“d:c” + dz?) 4+ dszs |
dual to boundaryl = 4 N'=4 (large N) SU (N ) Superconformal
Yang-Mills theory, couplingj? ,, = e?.

Assume AdS/CFT: studirme-dependent deformations of AAdS/CFT.
Bulk: time-dependent sources, time evolution (thro Einstemsgq
eventually gives cosmological singularity. Breaks down.
Boundary Gauge theory dual is a sensible Hamiltonian quantum
system in principle, subject to time-dependent sourcesp&ese?

Deform metric, dilaton (non-normalizable time-dep definns
ds* = 5 (guudatda” + dz?) + ds%s | ® = ®(t) or &(zH).

Solutionif: Ry, = 59,20,®, = 0,(v/~7 §"0,®) = 0.
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AdS cosmologies cont’d

In many cases, possible to find new coordinates such thataoyn
metricds{ = lim, _.q 2%ds? is flat, at least as an expansion about
boundary £ = 0): Penrose-Brown-Henneaux (PBtansformations,
subset of bulk diffeomorphisms leaving metric invariant (i
Fefferman-Graham form), acting as Weyl transformation oumalary.
Thus dual gauge theory lives on flat space. So sharp subtopurest
Gauge theory with time-dependent couplifig,, = ¢?, subject to
Hamiltonian time evolution through this external time-dagent
source. Response?
Sources approaching — 0 at some finite point in time, e.g.
gy =€e¥ — (=t)?, p>0 [t <0], give rise to bulk singularity
Ry = %ciﬂ ~ }2 . Curvatures, tidal forces diverge néax 0.

We'd specially like to understand gauge theory responsetned).
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Gauge theories, time-dep couplings

Gauge theory kinetic termg e~ * F? not canonical.
As in usual perturbation theory, try absorbing couplgrigM = % into the gauge fieldi,,: now
gy M appears only in interaction terms.

Toy scalar theory: L[X]= —e® (%(85()2 + X4).
RedefiningX = ¢®/2X: L— —(0X)? —m?(®)X? —e®X*,
dropping a boundary term, ana?(®) = 9, P0*® — 30,01 P .
Time-dep® = ®(t): e.g. giyy =e* = (—t)?, p>0 [t < 0]

gives m?(®) = —1($)? 4 1 = —2@+2)

Can study time-dep quantum mechanics of single momeritunodes.

e X variables canonical: tachyonic divergent mass forkes tp% . Extra information required
asX — oo: X description not good.

e X variables finite near = 0: interaction termsz—‘l’f(ﬂtwo large.
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Time-dep field theory wave-fnal

General field theory Schrodinger picture analysis possibdt = 0.
[Lagrangian [ d3z e~ ® (1 (0, X)% — 1(0;X)? — X*) = [d3z e ® (1 (0, X)% — V[X])]

. 2
[I(x) — ?5_)( . Hamiltonian: H = ¢ ‘I)V[X +e‘pfd3x(—%£72) ,

Schrodinger eqn: 0, X (x),t] = Hy[X (x),1] .
e® = (—t)? — 0 ast — 0, so potential terne—*V dominates ind =
i0pp ~ e~ ®WV[X (2] . This gives near-singularity time-dep of
wave-functional (generic state) as

PX (@), 8] ~ e A eTTVIXE] gy (X ()]

Phaser S VX (2)]. If p > 1, “wildly” oscillating (¢ — 0).

I—p
Energy diverges for generic stat(Q% # 0) [no time-dep in(V)]
(H) ~ e (V) = = [X] [0l X (2)]]? .
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The gauge theory

Analyzing various dilaton couplings to scalars, fermiaga,ige fields,
dominant contributions as® = (—t)? — 0 are gauge fields.

Gauge fields: KE terms have dilaton couplifig=* TrF“. Determine
the behaviour of the system neaw 0.

(Coulomb gauge) Residual action for two physical transvers
componentsi’ becomes [ e~ %?(0A")?, (i.e. two copies of the scalar
theory earlier). Cubic/quartic interactions: no time datives,
contribute only to potential energy/ [A*(x ;[ dPx TeFy

Near singularity(t ~ 0) time-dep of wave functional
Zb[Ai(x),t] ~ e—i([dt e~ P)V[A (x)] w()[Az(x)] _
“Wildly” oscillating phase { > 1). Energy diverge$H) ~ e=* (V).

Thus if g3-,, = e® — 0 strictly, gauge theory response singular.
For cutoffe®, large energy production due to time-dep source.
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AdS cosmologies with spacelike

singularities
Recall: ds? = Z%(guyda:“dac” + dz?) + ds?s,5 , &= P(zH) .
Solution if: Ry, = 20,90, @, - Ou(V/=3 §"0,®) =0.

Solutions with spacelike Big-Bang (Crunch) singularities
o ds?=5% [d% —dt?+ 30, t2p@‘(daz’i)2] ,

e? = |t|V20-2ipD) | S =1, [Kasner cosmologies]

o ds* =1 22 + | sinh(2t)|(—dt? + ﬂ:jg + r?(d6?* + Sin29d¢2))},

e® = g, | tanht|V3 . [k = —1 (hyperbolic) FRW boundary]

Dilaton bounded, asymptotic spacetitdéSs x S° (using coord transf)

o ds? =L [de? — di? 4 nup(t)(cada®)(hda?)| e = e
AdS-BKL cosmologies: spatial metric is a homogenous space |
Bianchi classification.
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Singularities, gauge theory

Families of AdS-cosmologies with similar leading near silagity
behaviour: essentially dilaton-driven, symmetric AdSsKer {; = %).

With flat bndry metric: gauge coupling.,, = e* = \t\ﬁ ast — 0.

p = /3 > 1 = wave-fnal phase “wildly” oscillating, ill-defined (from
earlier). Energy divergent if2,, = ¢® — 0 strictly ast — 0.

In gauge theory, deform gauge coupling so #tat, = ¢® small but
nonzero neat = 0. Now finite but large phase oscillation and energy
production. ® ~ g’;—ﬁ finite so bulk also nonsingular (but stringy).

Eventual gauge theory endpoint depends on details of energy
production. On long timescales, expect that gauge theamyrtalizes:
then reasonable to imagine that late-time bulk is AdS-Schsahild

black hole.
See also arXiv:0906.3278wad, Das, Ghosh, Oh, Trivedslowly varying dilaton cosmologies

and their gauge theory duals.
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Null singularities, gauge theory

Gy = e2@)  gg2 = z%[ef(ﬁ)dajuda:“ + dz?] + d8%5 .
There exist gauge theory variables where the interactionge
unimportant nea¢® — 0. Near singularity lightcone Schrodinger
wavefunctional resembles that for weakly coupled YangsMiteory at
location in null time ¢ = 0) of bulk singularity [e.g.e® ~ gs(—2T)7].
These variables appear to be dual to stringy objects in bulk.

This suggests that while classical bulk sugra variablebade
lightcone Hamiltonian time evolution of the gauge theorgassible.

Renormalization effects: introduce “short-time” (momentum)
cutoff. Sufficiently high frequency modes in gauge theogjdtive to
d) might give nontrivial contributions to gauge theory effee
action/Hamiltonian, so previous arguments might be madlifie
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Null singularities and strings

Expectation: stringy effects (beyond GR) are important.

AdS string technically difficult. Possible to construct pier toy
models with no fluxes or dilaton, where the singularityig-ely
gravitational SO more tractable by string worldsheet methods.

Consider ds® = @) (—2datdr™ + (da?)?) + el @) (da™)?,
withi=1,2, m=3,...,D — 2.

Simple classes of null Kasner-like cosmological singtiesiatz™ = 0
arise ase/'t — (zT)P1.

Einstein equations;- algebraic relations between Kasner exponents.

[Integer-valued exponents exist, but restrictive: for= 10 (critical superstring),
(po,p1) = (0,2),(12,—2), (12, 28), (180, —28), (180, 390), . . .]

Can recast these asls? = —2dyTdx~ + (y+)4 (da!)?.
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Null Kasner singularities, plane waves

Null Kasner: ds? = —2dy*dsz~ + (y")A1(dz’)?.  [Rosen]

By coord transf y/ = (y")41/221 y~ =2~ + (foyffyw),

these can be recast as anisotropic plane waves with singdar

2 .
ds? = —2dy*dy~ — 32, xr(y") 2 + (dy)?,  [Brinkman]

with A[ — 1:|:\/1—4X].

Einstein eqns: Ry = 455 2.1 X1 = 7 L1 A4 o,

All x r equal: solutions only with other matter fields.

Curvature invariants finite in these null backgrounds.
Diverging tidal forces: from deviation of null geodesic goaences.
No nonzero covariant contracties no o’ stringy corrections.

Various previous investigations of singular plane waves.
We will mostly focus here on Rosen (null Kasner cosmologyinfo
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Free string worldsheet theory

Closed string actio = — [ 299\/—hh® 9, X 0y X" g, (X) .

Aol

hoo -
h’TT '

Rosen actionSg = — —— [d?0 (—2Eg4 -0 X~ — Egr1(0-2")% + + g11(9s27)?).

[Lightcone gaugey™ = 7. Seth,, = 0, with E(7,0) = /—

Egy— _ 1 : _ 1
5] = —o5-g7] — const givesE = — ]

Lightcone momentum conjugateto p_ =

Lightcone gauge HamiltoniaH = —p, satisfying physical state
condition (m2 = —2¢"p1p_ — g’ (p1o)?): [l = —27'(']?_(1/, p_ < 0]

HR:ﬁfOldO' ((2ma’)* 2(0)” ) + 741 (0,2")?).  [Rosen]

containing only physical transverse string degrees ofifvee:’ .
Quadratic worldsheet theory, external time-dependerfficmats.

By comparison Brinkman Hamiltonian is

T Jdo ((2ma’)2(T1)% + (95" )? + 30, 24 (y')?) -
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Lightcone string wavefunctional

Want to understand near singularity time-dependence lofdane

string Schrodinger wavefunctional.

Schrodinger eqn:  i0,+ ¥ =0, ¥[z', 7] = H[z', 7]¥[z!, 7].
[Hr = = [l do ((27a/ )Q(T Z AT (0,2T)?), T [o] = —id ]

Ar > 0:ast — 0, kinetic terms dominate,

i@T\IJ[QjI,T] ~ —ma/TA fd(f 5552 \IJ[CUI;T]

1Ay

= 9 g

o

giving Uzl 7] ~ e
Wavefunctional has nonsingular time-depdif < 1.

[Alternatively, can recast this as flat space free Schragtiegn in terms of 1 —41 ]

. 1A [ do (9ga1)?
Ap <0 Uzl 7]~ e "TmaT-1A7D) Ulz!], well-defined if|Ar| < 1.

[Brinkman] W[y, 7] ~ e~ 7 Zrx1)? glyl],  ill-defined.
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Singular plane waves, Rosen patches

Thus Rosen frames witti;| < 1 encode string wavefunctional having
nonsingular time-dependence near singularity. Multipiehs
Rosen-Kasner exponents: does such a Rosen-Kasner frasheveli
|A;| < 1 for eachz!-dirn, consistent with eqns of motion?

Simplest case: two Kasner exponedts As.

[ds? = —2dyTdz™ + 741 (d22 + dz2) + 742 (d2% + ... + dz%,_,)
2x1 + (D — 4)X2 =244 (2 — Al) -+ (D — 4)A2(2 — AQ) = O.]

Ar=1++/1—4x; = four Rosen frames/patches.

Can show that O<X1 L, 0<A=1-T—-4q<1,

—3< - (D s = X2 <0, —1<Ax=1-+1-4x2 <0,

gives a Rosen patdi; , A5 ) with 0 < |A; ], |A2| < 1.

With more Kasner exponents €. more anisotropy), space of
possibilities increases.
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Detailed string quantization

Classical string modes can be exactly solved for from woees
EOM: Free string quantization can be carried out in greatitlet

1—A

[hn () = VA(T) T (el iz (F) + g Yioap ()
[2! (r,0) = &f(r) + 252, (ki fh, (D) afe™o/t +afemno/t) + hee)]
String spectrum, oscillator masses can be calculatedosiypli

Toy model: time-dep harmonic oscillator arising as 1-ding momentum mode of string.
Allows explicit calculations of wavefunctions, observedl

Observables without time derivatives can be shown to beichdn
between Rosen/Brinkman variables.

Observables with time derivatives are different: both ayee but Rosen
ones are milder for singularities withl ;| < 1.

[Momentum exp. values(} [ do g/!(T1')2) ~ 3= |kL|?gr7|fL12({ak, al } + h.c.) for
single excitation states. Slné I)2 (Hé ‘;‘I yI) , these are different.

+ [do r=AT(11L)2) ~ T_AI [Rosen], (1} [do (I11)2) ~ 741-2 [Brinkman]]
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Mode asymptotics, oscillator masses

_AI

[#h (1) = Vi) 2 el Tiag (%) + ehaYaa, (%))
Cutoff const-(null)time surfacey™ =7 = 7. = y:

local energy density (curvature) 1) .
Low-lying (smalln):  fh ~ M+ )\ ()AL n< —.
Highly stringy (largen): f4 ~ /Zl’;“;c[/;m nTe > 1.

These ultra-high oscillation number modes exist for anyitdsimal
regularization of near-singularity region.

[Massesn? = 3 L |27t (({an, Lot {ak.al, b (1.2 + ’Z’—jlfén\Q)
all—Ar

{aI ~I <(fRn)2 l2 (fRn) ) + h. C) klIfin - % 2|c

Oscillator algebra: [al,a” | =[al,a’ | =né1"6pm)]

n2a

nOI

Single string states light near singularity: using modengsytics,
low-lying: m? ~ lAjI < %, highly stringy: m? ~ 2 < &

o’ Te

[This requires% Ln <K (y(;/)Q ]
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Oscillator masses

Highly stringy oscillators light ifz(?yf‘)/ «Ln<K (y‘i')Q.

Implicitly implies p_ < —.

C

Estimate for number of such oscillator levels excit 3 ':)2 (1—p_yl).
On a Planck scale cutoff surface, highest oscillator lavaldd on is of

ordern ~ ()2 ~ —5—s [Using naive relation for Newton const
Js

lp
Gp = 1572 = g2I1P~2]. In free string limitg, — 0, large number
n > 1 of highly stringy oscillator states.
As T — 0, all oscillators light, excited.
Large proliferation of light string states in near singtlaregion.

String is highly excited in the vicinity of the singularity.
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Conclusions, guestions

Null: Free string wavefunctional has nonsingular time-dep foiage
singularities. However, proliferation of light string aléator states near
singularity. Possibly large backreaction due to highlyiextstrings.
String interactions, 2nd quantized (string field theorgfiework?

Dual to renormalization effects (for corresponding AdSnaokgies)?

Spacelikelf gauge couplingi ,,(t) — 0 strictly, then gauge theory
response singular: energy diverges. Defgtm, to be small but
nonzero neat = 0. Now finite but large phase oscillation and energy
production.® ~ g—ﬁ finite now, so bulk also nonsingular.

Likely string oscillators highly excited.

Continuing past singularity, eventual endpoints ?

Futuristic: hints of very early universe?
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