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• AdS/CFT with cosmological singularities: gauge theories with

time-dep couplings and spacelike singularities

• worldsheet: null singularities and free strings
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Big-Bang singularities, strings . . .

• Big Bang/Crunch singularities, time, in string theory (toy) models?

Understandspacelike, null singularities — events in time.

General Relativity breaks down at singularities:

curvatures, tidal forces divergent, notions of spacetime break down.

Want “stringy” description, eventually towards smooth quantum

(stringy) completion of classical spacetime geometry.

Previous examples: “stringy phases” ine.g. 2-dim worldsheet (linear sigma model) descriptions

(including time-dep versions, e.g. tachyon dynamics in (meta/)unstable vacua), dual

gauge/Matrix theories, . . .

In what follows, we’ll use (i) theAdS/CFTframework,

(ii) worldsheetstring spectrum analysis near null singularities.
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AdS/CFT and deformations
Bulk string theory onAdS5 × S5 with dilaton (scalar)Φ = const,

5-form field strength, and metric (Poincare coords)

ds2 = 1
z2
(ηµνdx

µdxν + dz2) + ds2S5 ,

dual to boundaryd = 4 N=4 (largeN ) SU(N) Superconformal

Yang-Mills theory, couplingg2YM = eΦ.

Assume AdS/CFT: studytime-dependent deformations of AdS/CFT.

Bulk: time-dependent sources, time evolution (thro Einstein eqns)

eventually gives cosmological singularity. Breaks down.

Boundary: Gauge theory dual is a sensible Hamiltonian quantum

system in principle, subject to time-dependent sources. Response?

Deform metric, dilaton (non-normalizable time-dep defmns):

ds2 = 1
z2
(g̃µνdx

µdxν + dz2) + ds2S5 , Φ = Φ(t) orΦ(x+).

Solution if: R̃µν = 1
2∂µΦ∂νΦ , 1√−g̃

∂µ(
√−g̃ g̃µν∂νΦ) = 0.
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AdS cosmologies cont’d
In many cases, possible to find new coordinates such that boundary

metricds24 = limz→0 z
2ds25 is flat, at least as an expansion about

boundary (z = 0): Penrose-Brown-Henneaux (PBH)transformations,

subset of bulk diffeomorphisms leaving metric invariant (in

Fefferman-Graham form), acting as Weyl transformation on boundary.

Thus dual gauge theory lives on flat space. So sharp sub-question:

Gauge theory with time-dependent couplingg2YM = eΦ, subject to

Hamiltonian time evolution through this external time-dependent

source. Response?

Sources approachingeΦ → 0 at some finite point in time, e.g.

g2YM = eΦ → (−t)p , p > 0 [t < 0], give rise to bulk singularity

Rtt =
1
2 Φ̇

2 ∼ 1
t2
. Curvatures, tidal forces diverge neart = 0.

We’d specially like to understand gauge theory response near t = 0.
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Gauge theories, time-dep couplings
Gauge theory kinetic terms

∫

e−ΦF 2 not canonical.
As in usual perturbation theory, try absorbing couplingg2Y M = eΦ into the gauge fieldAµ: now

gY M appears only in interaction terms.

Toy scalar theory: L[X̃ ] = −e−Φ
(

1
2(∂X̃)2 + X̃4

)

.

RedefiningX̃ = eΦ/2X: L→ −(∂X)2 −m2(Φ)X2 − eΦX4 ,

dropping a boundary term, andm2(Φ) = 1
4∂µΦ∂

µΦ− 1
2∂µ∂

µΦ .

Time-depΦ = Φ(t): e.g. g2YM = eΦ = (−t)p , p > 0 [t < 0]

gives m2(Φ) = −1
4(Φ̇)

2 + 1
2 Φ̈ = −p(p+2)

4 t2
.

Can study time-dep quantum mechanics of single momentum-k modes.

• X variables canonical: tachyonic divergent mass forcesX ∼ 1
tp/2

. Extra information required

asX → ∞: X description not good.

• X̃ variables finite neart = 0: interaction termse−ΦX̃4|t∼0 large.
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Time-dep field theory wave-fnal
General field theory Schrodinger picture analysis possibleneart = 0.

[Lagrangian
∫

d3x e−Φ( 1
2
(∂tX̃)2 − 1

2
(∂iX̃)2 − X̃4) ≡

∫

d3x e−Φ( 1
2
(∂tX̃)2 − V [X̃])]

Π(x) → 1
i

δ
δX̃

; Hamiltonian: H = e−ΦV [X̃] + eΦ
∫

d3x(−1
2

δ2

δX̃2
) ,

Schrodinger eqn: i∂tψ[X̃(x), t] = Hψ[X̃(x), t] .

eΦ = (−t)p → 0 ast→ 0, so potential terme−ΦV dominates inH ⇒
i∂tψ ∼ e−Φ(t)V [X̃(x)]ψ . This gives near-singularity time-dep of

wave-functional (generic state) as

ψ[X̃(x), t] ∼ e−i(
∫

dt e−Φ(t))V [X̃(x)] ψ0[X̃(x)] .

Phase∼ (−t)1−p

1−p V [X̃(x)] . If p > 1, “wildly” oscillating (t→ 0).

Energy diverges for generic states(〈V 〉 6= 0) [no time-dep in〈V 〉]
〈H〉 ∼ e−Φ〈V 〉 = 1

(−t)p

∫

DX̃ V [X̃] |ψ0[X̃(x)]|2 .
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The gauge theory
Analyzing various dilaton couplings to scalars, fermions,gauge fields,

dominant contributions aseΦ = (−t)p → 0 are gauge fields.

Gauge fields: KE terms have dilaton coupling
∫

e−Φ TrF 2. Determine

the behaviour of the system neart ∼ 0.

(Coulomb gauge) Residual action for two physical transverse

componentsAi becomes
∫

e−Φ(∂Ai)2 , (i.e. two copies of the scalar

theory earlier). Cubic/quartic interactions: no time derivatives,

contribute only to potential energyV [Ai(x)] = 1
4

∫

d3x TrF 2
ij .

Near singularity(t ∼ 0) time-dep of wave functional

ψ[Ai(x), t] ∼ e−i(
∫

dt e−Φ)V [Ai(x)] ψ0[A
i(x)] .

“Wildly” oscillating phase (p > 1). Energy diverges〈H〉 ∼ e−Φ〈V 〉.
Thus ifg2YM = eΦ → 0 strictly, gauge theory response singular.

For cutoffeΦ, large energy production due to time-dep source.
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AdS cosmologies with spacelike
singularities

Recall: ds2 = 1
z2

(g̃µνdxµdxν + dz2) + ds2
S5 , Φ = Φ(xµ) .

Solution if: R̃µν = 1
2
∂µΦ∂νΦ , 1√−g̃

∂µ(
√−g̃ g̃µν∂νΦ) = 0 .

Solutions with spacelike Big-Bang (Crunch) singularities:

• ds2 = 1
z2

[

dz2 − dt2 +
∑3

i=1 t
2pi(dxi)2

]

,

eΦ = |t|
√

2(1−∑

i p
2
i ),

∑

i pi = 1 . [Kasner cosmologies]

• ds2 = 1
z2

[

dz2 + | sinh(2t)|(−dt2 + dr2

1+r2
+ r2(dθ2 + sin2θdφ2))

]

,

eΦ = gs | tanh t|
√
3 . [k = −1 (hyperbolic) FRW boundary]

Dilaton bounded, asymptotic spacetimeAdS5 × S5 (using coord transf).

• ds2 = 1
z2

[

dz2 − dt2 + ηab(t)(e
a
αdx

α)(ebβdx
β)
]

, eΦ = eΦ(t) .

AdS-BKL cosmologies: spatial metric is a homogenous space in

Bianchi classification.
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Singularities, gauge theory
Families of AdS-cosmologies with similar leading near singularity

behaviour: essentially dilaton-driven, symmetric AdS-Kasner (pi = 1
3 ).

With flat bndry metric: gauge couplingg2YM = eΦ = |t|
√
3 ast→ 0.

p =
√
3 > 1 ⇒ wave-fnal phase “wildly” oscillating, ill-defined (from

earlier). Energy divergent ifg2YM = eΦ → 0 strictly ast→ 0.

In gauge theory, deform gauge coupling so thatg2YM = eΦ small but

nonzero neart = 0. Now finite but large phase oscillation and energy

production. Φ̇ ∼ ġY M
gY M

finite so bulk also nonsingular (but stringy).

Eventual gauge theory endpoint depends on details of energy

production. On long timescales, expect that gauge theory thermalizes:

then reasonable to imagine that late-time bulk is AdS-Schwarzschild

black hole.
See also arXiv:0906.3275,Awad, Das, Ghosh, Oh, Trivedi: slowly varying dilaton cosmologies

and their gauge theory duals.
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Null singularities, gauge theory
g2YM = eΦ(x+), ds2 = 1

z2
[ef(x

+)dxµdx
µ + dz2] + ds2S5 .

There exist gauge theory variables where the interaction terms

unimportant neareΦ → 0. Near singularity lightcone Schrodinger

wavefunctional resembles that for weakly coupled Yang-Mills theory at

location in null time (x+ = 0) of bulk singularity [e.g.eΦ ∼ gs(−x+)p].

These variables appear to be dual to stringy objects in bulk.

This suggests that while classical bulk sugra variables arebad,

lightcone Hamiltonian time evolution of the gauge theory issensible.

Renormalization effects: introduce “short-time” (momentum)

cutoff. Sufficiently high frequency modes in gauge theory (relative to

Φ̇) might give nontrivial contributions to gauge theory effective

action/Hamiltonian, so previous arguments might be modified.
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Null singularities and strings
Expectation: stringy effects (beyond GR) are important.

AdS string technically difficult. Possible to construct simpler toy

models with no fluxes or dilaton, where the singularity ispurely

gravitational so more tractable by string worldsheet methods.

Consider ds2 = eh0(x+)
(

−2dx+dx− + (dxi)2
)

+ ehm(x+)(dxm)2,

with i = 1, 2, m = 3, . . . ,D − 2.

Simple classes of null Kasner-like cosmological singularities atx+ = 0

arise asehI → (x+)pI .

Einstein equations⇒ algebraic relations between Kasner exponents.
[Integer-valued exponents exist, but restrictive: forD = 10 (critical superstring),

(p0, p1) = (0, 2), (12,−2), (12, 28), (180,−28), (180, 390), . . .]

Can recast these asds2 = −2dy+dx− + (y+)AI (dxI)2.
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Null Kasner singularities, plane waves
Null Kasner: ds2 = −2dy+dx− + (y+)AI (dxI)2. [Rosen]

By coord transf yI = (y+)AI/2xI , y− = x− + (
∑

I AI(y
I )2

4y+
),

these can be recast as anisotropic plane waves with singularities

ds2 = −2dy+dy− −∑

I χI(y
I)2 (dy

+)2

(y+)2
+ (dyI)2, [Brinkman]

with AI = 1±√
1− 4χI .

Einstein eqns: R++ = 1
(y+)2

∑

I χI =
1

(y+)2
∑

I
AI(2−AI)

4 = 0.

All χI equal: solutions only with other matter fields.

Curvature invariants finite in these null backgrounds.

Diverging tidal forces: from deviation of null geodesic congruences.

No nonzero covariant contraction⇒ noα′ stringy corrections.

Various previous investigations of singular plane waves.

We will mostly focus here on Rosen (null Kasner cosmology) form.
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Free string worldsheet theory

Closed string actionS = −
∫

dτdσ
4πα′

√
−hhab ∂aXµ∂bX

νgµν(X) .

[Lightcone gaugey+ = τ . Sethτσ = 0, with E(τ, σ) =
√

−hσσ
hττ

:

Rosen actionSR = − 1
4πα′

∫

d2σ (−2Eg+−∂τX− − EgII(∂τx
I)2 + 1

E
gII(∂σx

I)2).

Lightcone momentum conjugate tox− p− =
Eg+−

2πα′l
= − 1

2πα′l
= const givesE = − 1

g+−
. ]

Lightcone gauge HamiltonianH = −p+, satisfying physical state

condition (m2 = −2g+−p+p− − gII(pI0)
2): [l = −2πp−α′, p− < 0]

HR = 1
4πα′

∫ l
0 dσ

(

(2πα′)2 (Π
I)2

τAI
+ τAI (∂σx

I)2
)

. [Rosen]

containing only physical transverse string degrees of freedomxI .

Quadratic worldsheet theory, external time-dependent coefficients.

By comparison, Brinkman Hamiltonian is

HB = 1
4πα′

∫

dσ
(

(2πα′)2(ΠI
y)

2 + (∂σy
I)2 +

∑

I
χI

τ2
(yI)2

)

.
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Lightcone string wavefunctional
Want to understand near singularity time-dependence of lightcone

string Schrodinger wavefunctional.

Schrodinger eqn: i∂y+Ψ = i∂τΨ[xI , τ ] = H[xI , τ ]Ψ[xI , τ ].

[HR = 1
4πα′

∫ l
0 dσ

(

(2πα′)2 (ΠI )2

τAI
+ τAI (∂σxI)2

)

, ΠI [σ] = −i δ
δxI [σ]

.]

AI > 0: asτ → 0, kinetic terms dominate,

i∂τΨ[xI , τ ] ∼ −πα′τ−AI
∫

dσ δ2

δxI2
Ψ[xI , τ ]

giving Ψ[xI , τ ] ∼ e
iπα′ τ1−AI

1−AI

∫

dσ δ2

δxI
2 Ψ[xI ].

Wavefunctional has nonsingular time-dep ifAI ≤ 1.

[Alternatively, can recast this as flat space free Schrodinger eqn in terms ofτ1−AI .]

AI < 0: Ψ[xI , τ ] ∼ e
−i τ1−|AI |

4πα′(1−|AI |)

∫
dσ (∂σxI )2

Ψ[xI ], well-defined if|AI | ≤ 1.

[Brinkman] Ψ[yI , τ ] ∼ e−
i
τ

∑

I χI(y
I)2 Ψ[yI ], ill-defined.
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Singular plane waves, Rosen patches
Thus Rosen frames with|AI | ≤ 1 encode string wavefunctional having

nonsingular time-dependence near singularity. Multiple such

Rosen-Kasner exponents: does such a Rosen-Kasner frame exist with

|AI | ≤ 1 for eachxI-dirn, consistent with eqns of motion?

Simplest case: two Kasner exponentsA1, A2.
[ds2 = −2dy+dx− + τA1 (dx2

2 + dx2
3) + τA2 (dx2

4 + . . .+ dx2
D−2)

2χ1 + (D − 4)χ2 = 2A1(2− A1) + (D − 4)A2(2−A2) = 0.]

AI = 1±√
1− 4χI ⇒ four Rosen frames/patches.

Can show that 0 < χ1 ≤ 1
4 , 0 < A1 = 1−√

1− 4χ1 ≤ 1 ,

−3
4 ≤ − 1

2(D−4) ≤ χ2 < 0, −1 ≤ A2 = 1−√
1− 4χ2 < 0,

gives a Rosen patch(A−
1 , A

−
2 ) with 0 < |A1|, |A2| ≤ 1.

With more Kasner exponents (i.e. more anisotropy), space of

possibilities increases.
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Detailed string quantization
Classical string modes can be exactly solved for from worldsheet

EOM: Free string quantization can be carried out in great detail.

fI
Rn(τ) =

√
n( τ

l
)
1−AI

2 (cIn1J 1−AI
2

(nτ
l
) + cIn2Y 1−AI

2

(nτ
l
))

[xI (τ, σ) = xI
0(τ) +

∑∞
n=1

(

kInf
I
Rn(τ)(a

I
ne

inσ/l + ãIne
−inσ/l) + h.c.

)

]

String spectrum, oscillator masses can be calculated explicitly.
Toy model: time-dep harmonic oscillator arising as 1-dim single momentum mode of string.

Allows explicit calculations of wavefunctions, observables.

Observables without time derivatives can be shown to be identical

between Rosen/Brinkman variables.

Observables with time derivatives are different: both diverge, but Rosen

ones are milder for singularities with|AI | ≤ 1.

[Momentum exp. values:〈 1
l

∫

dσ gII(ΠI)2〉 ∼ ∑

n |kIn|2gII |ḟI
n|2({aIn, aI−n}+ h.c.) for

single excitation states. Since
(ΠI

x)2

τAI
=

(

ΠI
y − AI

2τ
yI

)2
, these are different.

〈 1
l

∫

dσ τ−AI (ΠI
x)

2〉 ∼ τ−AI [Rosen], 〈 1
l

∫

dσ (ΠI
y)

2〉 ∼ τAI−2 [Brinkman].]
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Mode asymptotics, oscillator masses
[fI

Rn(τ) =
√
n( τ

l
)
1−AI

2 (cIn1J 1−AI
2

(nτ
l
) + cIn2Y 1−AI

2

(nτ
l
))]

Cutoff const-(null)time surfacey+ ≡ τ = τc = y+c :

local energy density (curvature)∼ 1
(y+c )2

.

Low-lying (smalln): f IRn ∼ λI2n + λI1n(
τc
l )

1−AI , n≪ l
τc

.

Highly stringy (largen): f IRn ∼ e−inτc/l

(τc/l)AI/2
, nτc ≫ l.

These ultra-high oscillation number modes exist for any infinitesimal

regularization of near-singularity region.
[Massesm2 =

∑

n
p−l

2α′ |kIRn|2τAI

(

({aIn, aI−n}+ {ãIn, ãI−n})
(

|ḟI
Rn|2 + n2

l2
|fI

Rn|2
)

− {aIn, ãIn}
(

(ḟI
Rn)

2 + n2

l2
(fI

Rn)
2
)

+ h.c.
)

, kIRn = i
n

√

πα′l−AI

2|cIn0|
.

Oscillator algebra: [aIn, a
J
−m] = [ãIn, ã

J
−m] = nδIJδnm]

Single string states light near singularity: using mode asymptotics,

low-lying: m2 ∼ lAI

α′τ
AI
c

≪ 1
τ2c

, highly stringy: m2 ∼ n
α′ ≪ 1

τ2c
.

[This requires
p−α′

(y+
c )

≪ n ≪ α′

(y+
c )2

.]
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Oscillator masses
Highly stringy oscillators light if p−α′

(y+c )
≪ n≪ α′

(y+c )2
.

Implicitly implies p− ≪ 1

y+
c

.

Estimate for number of such oscillator levels excited:α
′

(y+c )2
(1− p−y+c ).

On a Planck scale cutoff surface, highest oscillator level turned on is of

ordern ∼ ( lslp )
2 ∼ 1

g
2/(D−2)
s

[using naive relation for Newton const

GD = lD−2
P = g2s l

D−2
s ]. In free string limitgs → 0, large number

n≫ 1 of highly stringy oscillator states.

As y+c → 0, all oscillators light, excited.

Large proliferation of light string states in near singularity region.

String is highly excited in the vicinity of the singularity.
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Conclusions, questions

Null: Free string wavefunctional has nonsingular time-dep for certain

singularities. However, proliferation of light string oscillator states near

singularity. Possibly large backreaction due to highly excited strings.

String interactions, 2nd quantized (string field theory) framework?

Dual to renormalization effects (for corresponding AdS cosmologies)?

Spacelike:If gauge couplingg2YM (t) → 0 strictly, then gauge theory

response singular: energy diverges. Deformg2YM to be small but

nonzero neart = 0. Now finite but large phase oscillation and energy

production.Φ̇ ∼ ġY M
gY M

finite now, so bulk also nonsingular.

Likely string oscillators highly excited.

Continuing past singularity, eventual endpoints ?

Futuristic: hints of very early universe?

. . .
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