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Introduction

Introduction

Primordial fluctuations grow under gravity to form large scale structure today.

Primordial statistics are therefore imprinted in statistics of LSS.

Excursion set framework provides an analytical mapping between the two. Focus here is on the
halo mass function, i.e. – the mass distribution of virialized dark matter halos. (Later also the void
mass function.)
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Introduction

Introduction
Excursion set formalism

Two main ingredients :

Spherical collapse

A spherical region of initial (Lagrangian) radius
R and overdensity δR,i will expand, turn around
and eventually “collapse”.
(Ideally – to a point; realistically – to a virialized
object.)

Collapse will occur today if δR,i = ai δc where
δc ≃ 1.686.

Convenient to use “linearly extrapolated” density
δR ≡ δR,i/ai .
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A spherical region of initial (Lagrangian) radius
R and overdensity δR,i will expand, turn around
and eventually “collapse”.
(Ideally – to a point; realistically – to a virialized
object.)

Collapse will occur today if δR,i = ai δc where
δc ≃ 1.686.

Convenient to use “linearly extrapolated” density
δR ≡ δR,i/ai .

Random walks and first-passage

Assume that filtered, linly extrd density
contrast at ~x = 0 :
δ̂R = (2π)−3

∫
d3kW̃ (kR)δ̂(~k)

plays the role of δR .
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R
-1

δc

Random walks and first-passage

Assume that filtered, linly extrd density
contrast at ~x = 0 :
δ̂R = (2π)−3

∫
d3kW̃ (kR)δ̂(~k)

plays the role of δR .

As Lagrangian radius R is decreased, δ̂R
performs a random walk. If the walk
crossed δc on a scale R∗, assume that an
object of mass M∗ ∝ R3

∗ forms today.
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Introduction
Excursion set formalism

R
-1

δc

Random walks and first-passage

Assume that filtered, linly extrd density
contrast at ~x = 0 :
δ̂R = (2π)−3

∫
d3kW̃ (kR)δ̂(~k)

plays the role of δR .

As Lagrangian radius R is decreased, δ̂R
performs a random walk. If the walk
crossed δc on a scale R∗, assume that an
object of mass M∗ ∝ R3

∗ forms today.

We look for the largest scale on which δc is
crossed, since physically this object will
crush any smaller overdense regions.
Hence we want the first passage of the
barrier δc as R is decreased.
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Introduction
Excursion set formalism

Excursion set logic :

Variance S ≡ σ2
R = 〈 δ̂2

R 〉 = (2π)−3
∫

d3kW̃ (kR)2Pδ(k)

plays the role of a natural “time” for the random walk. As R → ∞, S → 0.
Details of the stochastic process depend on choice of filter. For the sharp-k filter and
Gaussian initial conditions, the process is Markovian.
With barrier at δc, consider distribution F of “first-crossing times” for ensemble of random
walks.
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Introduction
Excursion set formalism

Excursion set logic :

Variance S ≡ σ2
R = 〈 δ̂2

R 〉 = (2π)−3
∫

d3kW̃ (kR)2Pδ(k)

plays the role of a natural “time” for the random walk. As R → ∞, S → 0.
Details of the stochastic process depend on choice of filter. For the sharp-k filter and
Gaussian initial conditions, the process is Markovian.
With barrier at δc, consider distribution F of “first-crossing times” for ensemble of random
walks.
F can be related to observable number density of collapsed objects of mass
M = (4π/3)ρ̄R3 :

dn

dM
=

ρ̄

2M2
f (S)

∣∣∣∣
d ln S

d ln M

∣∣∣∣ ; f (S) ≡ 2SF(S) .

We refer to f (S) as the “mass function” (usually called multiplicity). Throughout, “time” refers to
the variance of density fluctuations S = σ2

R = σ2(M) . Bkgnd cosmology is WMAP7-compatible
ΛCDM.
The result for Gaussian init. condns. and the sharp-k filter is (Bond et al. (1991))

fPS(ν) =

√
2

π
νe−

1
2 ν

2
; ν = δc/σR .
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Introduction
Primordial non-Gaussianities (NG)

Characteristic imprint on LSS is via non-vanishing connected moments (cumulants) of δ̂R , e.g.
〈 δ̂R1

δ̂R2
δ̂R3

〉c . The simplest of these are the “equal-time” cumulants, which we parametrize as

ε1 ≡
〈 δ̂3

R 〉c

σ3
R

; ε2 ≡
〈 δ̂4

R 〉c

σ4
R

,

and so on. In particular, ε1 = σS3, ε2 = σ2S4, etc. where S3, S4, etc. are reduced cumulants.

For primordial NG, the εn remain approximately constant on scales of interest. E.g., for local
model with f loc

NL = 100, ε1 ≃ 0.02.

Primordial curvature perturbation : R(~x) = Rg(~x) + 3
5 f loc

NL

(
R2

g(~x)− 〈R2
g 〉
)
+ 9

25 gNLR3
g(~x)

Sub-horizon Bardeen potential : Φ(~k , z) = − 3
5 T (k)D(z)

a R(k)

Density contrast : δ(~k , z) = − 2ak2

3ΩmH2
0
Φ(~k , z) ≡ M(k , z)R(k)

Smoothed density contrast : δR(z) =
∫ d3k

(2π)3
W̃ (kR)δ(~k , z)
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NG parameters
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Mass function for halos MR prescription

Path integral approach
MR : Maggiore & Riotto, 2009

For now, ignore effects of sharp-x filter, barrier diffusion.
Non-Gaussian halo mass function is Details

f = −2S
∂

∂S

∣∣∣∣
δc

∫ δc

−∞

dδ1 . . . dδn exp
[
− 1

3!

n∑

j,k,l=1

〈 δ̂j δ̂k δ̂l 〉c∂j∂k∂l + . . .

]
W gm ,
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Mass function for halos MR prescription

Path integral approach
MR : Maggiore & Riotto, 2009

For now, ignore effects of sharp-x filter, barrier diffusion.
Non-Gaussian halo mass function is Details

f = −2S
∂

∂S

∣∣∣∣
δc

∫ δc

−∞

dδ1 . . . dδn exp
[
− 1

3!

n∑

j,k,l=1

〈 δ̂j δ̂k δ̂l 〉c∂j∂k∂l + . . .

]
W gm ,

with W gm the “Gaussian-Markovian” p.d.f for the random walk,

W gm =

n−1∏

k=0

Ψ∆S(δk+1 − δk ) ; Ψ∆S(x) =
1√

2π∆S
e−x2/(2∆S)
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Mass function for halos MR prescription

Path integral approach
MR : Maggiore & Riotto, 2009

For now, ignore effects of sharp-x filter, barrier diffusion.
Non-Gaussian halo mass function is Details

f = −2S
∂

∂S

∣∣∣∣
δc

∫ δc

−∞

dδ1 . . . dδn exp
[
− 1

3!

n∑

j,k,l=1

〈 δ̂j δ̂k δ̂l 〉c∂j∂k∂l + . . .

]
W gm ,

with W gm the “Gaussian-Markovian” p.d.f for the random walk,

W gm =

n−1∏

k=0

Ψ∆S(δk+1 − δk ) ; Ψ∆S(x) =
1√

2π∆S
e−x2/(2∆S)

MR strategy :

Linearize in 3-point function 〈 δ̂j δ̂k δ̂l 〉c

Taylor expand around Sn = S, assuming small S. Details

Perform resulting integrals, in continuum limit.

Non-Gaussian mass function is

fMR = fPS(ν)

[
1 +

1

6
ε1ν

3 − 1

4
ε1ν (4 − c1)−

ε1

4ν

(
c1 − 1

4
c2 − 2

)]
.
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Mass function for halos Improving the mass function

Scale dependence and small parameters

MR’s mass function has two small parameters : ǫ ∼ 〈 δ̂3 〉/σ3 and ν−1 ∼ σ/δc .

fMR ∼ fPS(ν)
[
1 + ǫν3 + ǫν + ǫν−1 + . . .

]
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Mass function for halos Improving the mass function

Scale dependence and small parameters

MR’s mass function has two small parameters : ǫ ∼ 〈 δ̂3 〉/σ3 and ν−1 ∼ σ/δc .

fMR ∼ fPS(ν)
[
1 + ǫν3 + ǫν + ǫν−1 + . . .

]

Question : Can neglected terms become comparable to those retained?
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Mass function for halos Improving the mass function

Scale dependence and small parameters

MR’s mass function has two small parameters : ǫ ∼ 〈 δ̂3 〉/σ3 and ν−1 ∼ σ/δc .

fMR ∼ fPS(ν)
[
1 + ǫν3 + ǫν + ǫν−1 + . . .

]

Equal-time contribution :

∼ S∂S

∫ δc

−∞

dδ1 . . . dδn〈 δ̂(S)3 〉
∑

j,k,l

∂j∂k∂l W
gm ∼ ν∂ν(ε1∂

3
ν)erf(ν) ∼ fPS(ν) ǫν

3
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Mass function for halos Improving the mass function

Scale dependence and small parameters

MR’s mass function has two small parameters : ǫ ∼ 〈 δ̂3 〉/σ3 and ν−1 ∼ σ/δc .

fMR ∼ fPS(ν)
[
1 + ǫν3 + ǫν + ǫν−1 + . . .

]

Equal-time contribution :

∼ S∂S

∫ δc

−∞

dδ1 . . . dδn〈 δ̂(S)3 〉
∑

j,k,l

∂j∂k∂l W
gm ∼ ν∂ν(ε1∂

3
ν)erf(ν) ∼ fPS(ν) ǫν

3

By same logic, expect a term ∼ fPS(ν)(ǫν
3)2.

This becomes comparable to ǫν if ǫν3 ∼ ν−2.
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Mass function for halos Improving the mass function

Scale dependence and small parameters

MR’s mass function has two small parameters : ǫ ∼ 〈 δ̂3 〉/σ3 and ν−1 ∼ σ/δc .

fMR ∼ fPS(ν)
[
1 + ǫν3 + ǫν + ǫν−1 + . . .

]

1´1014 2´1014 5´1014 1´1015 2´1015 5´1015
1

2

3

4

5

6

7

8

M Hh-1MsolL

Ν

ν ≡ δc(z)/σ(M)
with ǫ = 1/300, for z = 1 (solid), z = 0.5 (long
dashed) and z = 0 (short dashed).
Horizontal lines mark ν-values where ǫν3 =
(from top to bottom) 1, ν−1, ν−2, ν−3, ν−4 and
ν−5.
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Mass function for halos Improving the mass function

An improved mass function
Extending the MR analysis

2 observations :

ǫν3 is the worst offender, provided ǫν < 1. (Other terms, e.g. ǫ2ν4 etc., are then always
parametrically smaller than unity, even for ǫν3 ∼ 1.)
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An improved mass function
Extending the MR analysis

2 observations :

ǫν3 is the worst offender, provided ǫν < 1. (Other terms, e.g. ǫ2ν4 etc., are then always
parametrically smaller than unity, even for ǫν3 ∼ 1.)

ǫν3 appears as an equal-time term, and can hence be accounted for at all orders.

f = −2S
∂

∂S

∣∣∣∣
δc

∫ δc

−∞

dδ1 . . . dδn exp
[
− 1

3!

n∑

j,k,l=1

〈 δ̂j δ̂k δ̂l 〉c∂j∂k∂l + . . .

]
W gm ,

∫ δc

−∞

dδ1 . . . dδn exp


− 1

3!
〈 δ̂(S)3 〉

n∑

j,k,l=1

∂j∂k∂l


 (. . .) −→ e−(ε1/6)∂3

ν

∫ δc

−∞

dδ1 . . . dδn(. . .)

This is true for all equal time terms, e.g. ∼ 〈 δ̂(S)4 〉c
∑

j,k,l,m ∂j∂k∂l∂m, etc.

Unequal-time terms can be handled exactly as in MR calcn.
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Mass function for halos Improving the mass function

An improved mass function
Saddle point approximation

Assume ε1, ε2 const. for time being. Mass function reduces to the form

f ∼ ν e−(ε1/6)∂3
ν
+(ε2/24)∂4

ν
+...

[
e−ν2/2(1 + ǫν + ǫν−1 + . . .)

]
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Mass function for halos Improving the mass function

An improved mass function
Saddle point approximation

Assume ε1, ε2 const. for time being. Mass function reduces to the form

f ∼ ν e−(ε1/6)∂3
ν
+(ε2/24)∂4

ν
+...

[
e−ν2/2(1 + ǫν + ǫν−1 + . . .)

]

−→ ν

∫
∞

−∞

dλ√
2π

eiλνe−λ2/2+(−iλ)3ε1/6+(−iλ)4ε2/24+...P(λ)

where P(λ) ∼ 1 + iǫλ+ iǫλ−1 + ǫ2λ2 + . . .
Unequal-time effects contained in P(λ).

Saddle point calculation can be performed provided ǫν < 1. Figure
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Mass function for halos Improving the mass function

An improved mass function
Finer details

We also account for :

Barrier diffusion

Scale dependent errors

Filter effects
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Mass function for halos Improving the mass function

An improved mass function
Finer details

We also account for :

Barrier diffusion

Scale dependent errors

Filter effects

MR’s analysis goes through :

Gaussian case : Reduce 2-d problem to 1-d by change of variable.

Gaussian case : Final effect is δc → √
qδc; q = (1 + DB)

−1 ≃ 0.892 (DB from sims).

Non-Gaussian case : Dimensional reasoning implies same effect here as well.
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Mass function for halos Improving the mass function

An improved mass function
Finer details

We also account for :

Barrier diffusion

Scale dependent errors

Filter effects

As far as possible, ensure that terms ignored are parametrically smaller than terms retained.

In any case, track all possible terms ignored.

This amounts to retaining the structure

f (ν) ∼ fPS(ν) eǫν3+ǫ2ν4
(

1 + ǫν + ǫν−1 +O(ǫν−3, ǫ2ν2, ǫ3ν5)
)
.
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Mass function for halos Improving the mass function

An improved mass function
Finer details

We also account for :

Barrier diffusion

Scale dependent errors

Filter effects

Real space top-hat introduces its own non-Markovian/unequal time effects.

〈 δ̂(Sj )δ̂(Sk ) 〉 = min(Sj ,Sk ) + ∆jk .

We make same assumptions as MR, reg. filter effects in presence of barrier diffusion.

Gaussian case : f (ν) = (1 − κ̃)fPS(ν) + κ̃/(2π)1/2νΓ(0, ν2/2) + fPS(ν)O(κ̃2) ;
with κ̃ = q(0.464 + 0.002R) .

Non-Gaussian case : More complicated. “Mixed terms” ∼ κ̃ǫν hard to calculate. Issues with
“boundary layer”, regulation of divergences.
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Mass function for halos Improving the mass function

An improved mass function
Final results

Setting κ̃ = 0

f (ν, t) =fPS(ν) exp
[

1

6
ε1ν

3 − 1

8

(
ε2

1 − ε2

3

)
ν4
]

×
{

1 − 1

4
ε1ν (4 − c1)−

ε1

4ν

(
c1 − 1

4
c2 − 2

)

+O(ǫ3ν5, ǫ2ν2, ǫν−3)

}
.

c1, c2 definitions
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Mass function for halos Improving the mass function

An improved mass function
Final results

Setting κ̃ = 0

f (ν, t) =fPS(ν) exp
[

1

6
ε1ν

3 − 1

8

(
ε2

1 − ε2

3

)
ν4
]

×
{

1 − 1

4
ε1ν (4 − c1)−

ε1

4ν

(
c1 − 1

4
c2 − 2

)

+O(ǫ3ν5, ǫ2ν2, ǫν−3)

}
.

c1, c2 definitions

Compare MR result

fMR = fPS(ν)

[
1 +

1

6
ε1ν

3 − 1

4
ε1ν (4 − c1)−

ε1

4ν

(
c1 − 1

4
c2 − 2

)
+O(ǫ2ν6, ǫν−3)

]
.
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Mass function for halos Improving the mass function

An improved mass function
Final results

Setting κ̃ = 0

f (ν, t) =fPS(ν) exp
[

1

6
ε1ν

3 − 1

8

(
ε2

1 − ε2

3

)
ν4
]

×
{

1 − 1

4
ε1ν (4 − c1)−

ε1

4ν

(
c1 − 1

4
c2 − 2

)

+O(ǫ3ν5, ǫ2ν2, ǫν−3)

}
.

c1, c2 definitions

Compare Matarrese, Verde & Jiminez (2000) result
[v̇ ≡ d ln v/d ln S]

fMVJ = fPS(ν)
exp

[
ε1ν

3/6
]

(1 − ε1ν/3)1/2

[
1 − 1

2
ε1ν

(
1 − 2

3
ε̇1

)
+O(ǫν)

]
.
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Mass function for halos Improving the mass function

An improved mass function
Final results

Setting κ̃ = 0

f (ν, t) =fPS(ν) exp
[

1

6
ε1ν

3 − 1

8

(
ε2

1 − ε2

3

)
ν4
]

×
{

1 − 1

4
ε1ν (4 − c1)−

ε1

4ν

(
c1 − 1

4
c2 − 2

)

+O(ǫ3ν5, ǫ2ν2, ǫν−3)

}
.

c1, c2 definitions

Compare Loverde, et al. (2008) result
[v̇ ≡ d ln v/d ln S]

fLMSV,quad= fPS(ν)

[
1 +

1

6
ε1

(
H3(ν) +

2

ν
ε̇1H2(ν)

)
+

1

72
ε2

1

(
H6(ν) +

4

ν
ε̇1H5(ν)

)

+
1

24
ε2

(
H4(ν) +

2

ν
ε̇2H3(ν)

)
+O(ǫν, ǫ3ν9)

]
.
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Mass function for halos Improving the mass function

An improved mass function
Final results
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f (ν,S, fNL = 100)/f (ν,S, fNL = 0); for z = 1 and κ̃ = 0.
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Mass function for voids Two barriers and “voids in clouds”

Voids and excursion sets
Sheth & van de Weygaert, 2004

In spherical collapse model, a good definition of “void formation” is “first shell crossing”.

Excursion sets + spherical collapse =⇒ this occurs when δ̂R < −δv ; where δv ≃ 2.7.

But “voids in clouds” are not real voids, since they would be crushed by the collapsing
cloud.

So first crossing of (−δv ) must occur before first crossing of (+δc).

R
-1

δc

-δv

allowed

disallowed by v-in-c
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Mass function for voids Two barriers and “voids in clouds”

Voids and excursion sets
Sheth & van de Weygaert, 2004

In spherical collapse model, a good definition of “void formation” is “first shell crossing”.

Excursion sets + spherical collapse =⇒ this occurs when δ̂R < −δv ; where δv ≃ 2.7.

But “voids in clouds” are not real voids, since they would be crushed by the collapsing
cloud.

So first crossing of (−δv ) must occur before first crossing of (+δc).

Leads to

FSvdW(S) =
∞∑

j=1

j π

δ2
T

sin
(

j πδv

δT

)
exp

(
− j2π2S

2δ2
T

)
; δT ≡ δv + δc .
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Excursion sets + spherical collapse =⇒ this occurs when δ̂R < −δv ; where δv ≃ 2.7.

But “voids in clouds” are not real voids, since they would be crushed by the collapsing
cloud.

So first crossing of (−δv ) must occur before first crossing of (+δc).

Leads to

FSvdW(S) =
∞∑

j=1

j π

δ2
T

sin
(

j πδv

δT

)
exp

(
− j2π2S

2δ2
T

)
; δT ≡ δv + δc .

Convenient to re-organize the series as

FSvdW(S) =
1√
2π

∞∑

n=−∞

∆n

S3/2
exp

(
−∆2

n

2S

)
; ∆n ≡ δv − 2nδT .
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Mass function for voids Two barriers and “voids in clouds”

Voids and excursion sets : non-Gaussianities
Void-in-cloud corrections

In Gaussian case, with small S

fSvdW = 2SFSvdW =

∞∑

n=−∞

fPS

(
∆n√

S

)
−→ fPS(δv/

√
S) + . . .

Pictorially, we are in the extreme tails of Gaussian p.d.f.’s with means 2nδT – hence the
nearest Gaussian (n = 0) gives biggest contribn.

One could now argue : since PS works for Gaussian small S, it should also work for
non-Gaussian small S [Kamionkowski, Verde & Jimenez, 2008]. Essentially just replace δc → −δv .
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Mass function for voids Two barriers and “voids in clouds”

Voids and excursion sets : non-Gaussianities
Void-in-cloud corrections

However, care is needed since extreme tails are now strongly non-Gaussian. Path integral
formalism allows a more careful calculation. Final result for two fixed barriers is

f2barrier,NG(νv, νT) =

∞∑

n=−∞

f1barrier,NG (νv − 2nνT) ; ν = δ/
√

S .

f1barrier,NG(ν) = fPS(ν) exp

[
−1

6
ε1ν

3 − ν4

8

(
ε2

1 − ε2

3

)
+ . . .

](
1 − 1

4
ε1ν(c1 − 4) + . . .

)
.

Effective |ǫν| becomes > 1 already at n = ±1 for z = 0, M ∼ 1014h−1Msol. Series
expansion therefore breaks down. However, this can be argued to occur after Gaussian
suppression due to fPS has kicked in.

Similar reasoning shows v-in-c is relevant only for small masses.

In fact, to very good accuracy,

f2barrier,NG(νv, νT) = fSvdW(νv, νT)×
f1barrier,NG(νv)

fPS(νv)
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Mass function for voids Two barriers and “voids in clouds”

Voids and excursion sets : non-Gaussianities
Final results
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Summary

Summary

Halo mass function

Path integral formalism can be combined with saddle point techniques.

Resulting mass function expected to be valid at high redshifts for large masses.

Scale dependent theoretical errors can be tracked (enabling comparison between

different calculations).

Void mass function

Void-in-cloud issue makes the problem more challenging.

Non-Gaussian m.f. can be formally written as sum of infinite no. of single barrier

m.f.’s.

In practice, non-Gaussian m.f. = single barrier ratio × SvdW m.f.

V-in-c effects negligible for large voids, ∼ O(10%) for smaller voids.

Still some ways to go before this can be applied to observations.
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Summary

Summary

Halo mass function

Path integral formalism can be combined with saddle point techniques.

Resulting mass function expected to be valid at high redshifts for large masses.

Scale dependent theoretical errors can be tracked (enabling comparison between

different calculations).

Void mass function

Void-in-cloud issue makes the problem more challenging.

Non-Gaussian m.f. can be formally written as sum of infinite no. of single barrier

m.f.’s.

In practice, non-Gaussian m.f. = single barrier ratio × SvdW m.f.

V-in-c effects negligible for large voids, ∼ O(10%) for smaller voids.

Still some ways to go before this can be applied to observations.

Thank you.
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Models of NG
Local & Equilateral bispectra

Connected three point function of primordial curvature perturbation is characterised by the
“bispectrum” BR(k1, k2, k3) :

〈R(~k1)R(~k2)R(~k3) 〉c = (2π)3δD(~k1 + ~k2 + ~k3)BR(k1, k2, k3) .

Local NG bispectrum is peaked on squeezed triangles k1 ≪ k2 ≃ k3 :

BR(k1, k2, k3) =
6

5
f loc
NL [PR(k1)PR(k2) + cycl.] ; PR(k) = Akns−4 .

Equilateral NG bispectrum is peaked on equilateral triangles k1 ≃ k2 ≃ k3 :

BR(k1, k2, k3) =
18

5
f equil
NL A2

[ 1

2k4−ns
1 k4−ns

2

+
1

3(k1k2k3)2(4−ns)/3
− 1

(k1k2
2 k3

3 )
(4−ns)/3

+5 perms.
]
.

Back
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Path integral approach
MR, 2009

Excursion set formalism derived from first principles.
The random variable δ̂(S) obeys a Langevin equation ∂δ̂/∂S = η̂.
For sharp k -space filter, noise is white (process is Markovian) : 〈 η̂(S1)η̂(S2) 〉 = δD(S1 − S2) .

Start with p.d.f. for random walk, with n discrete steps ∆S from S0 = 0 to Sn = n∆S ≡ S:

W ({δj};S) ≡ 〈 δD(δ̂(S1)− δ1) . . . δD(δ̂(Sn)− δn) 〉

=

∫
∞

−∞

dλ1

2π
. . .

dλn

2π
〈 e−i

∑
j λj δ̂(Sj ) 〉ei

∑
j λjδj ,

in which we use 〈 e−i
∑

j λj δ̂(Sj ) 〉 = exp
[∑

∞

p=2
(−i)p

p!

∑n
j1,..,jp=1 λj1 . . . λjp 〈 δ̂(Sj1 ) . . . δ̂(Sjp ) 〉c

]
.

P(Ŝf > S) ≡ Probab. that first crossing timêSf > S

= Probab. that barrier not crossed until timeS

= lim
∆S→0

∫ δc

−∞

dδ1 . . . dδnW ({δj};S)

First crossing distribution : F(S) = −∂SP(Ŝf > S).
Mass function : f (S) = 2SF(S).

Back
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Path integral approach
MR, 2009

Gaussian case :

〈 e−i
∑

j λj δ̂(Sj ) 〉 = exp
[
− 1

2

∑n
j1,j2=1 λj1λj2 〈 δ̂j1 δ̂j2 〉

]
.

For sharp-k filter : 〈 δ̂j δ̂k 〉 = min(Sj ,Sk ), and

W ({δj};S) = W gm =

n−1∏

k=0

Ψ∆S(δk+1 − δk ) ; Ψ∆S(x) =
1√

2π∆S
e−x2/(2∆S)

In continuum limit, MR show (non-trivially) that this recovers fPS(ν).

Non-Gaussian case :

Use λk ei
∑

j λjδj = −i∂k ei
∑

j λjδj , leading to

f = −2S
∂

∂S

∣∣∣∣
δc

∫ δc

−∞

dδ1 . . . dδn exp
[
− 1

3!

n∑

j,k,l=1

〈 δ̂j δ̂k δ̂l 〉c∂j∂k∂l + . . .

]
W gm ,

Back
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Taylor expansion for 3-point function

〈 δ̂j δ̂k δ̂l 〉c =
∞∑

p,q,r=0

(−1)p+q+r

p!q!r !
G(p,q,r)

3 (S)(S − Sj )
p(S − Sk )

q(S − Sl )
r

G(p,q,r)
3 (S) ≡

[
dp

dSp
j

dq

dSq
k

d r

dSr
l

〈 δ̂(Sj )δ̂(Sk )δ̂(Sl ) 〉c

]

Sj=Sk=Sl=S

G(1,0,0)
3 =

1

2
ε1(S)c1(S)S1/2 ; G(2,0,0)

3 = −1

4
ε1(S)c2(S)S−1/2 ,

G(1,1,0)
3 =

1

4
ε1(S)c3(S)S−1/2

Also, with ε̇1 ≡ d ln ε1/d ln S, etc.

ε̇1 =
3

2
(c1 − 1) ; ċ1 = 1 − 3

2
c1 +

1

c1

(
c3 − 1

2
c2

)
.

MR calcn

Final results
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The cn
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MR calcn

Final results
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Behaviour of ε1ν
Local model, fNL = 100
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