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Loop does not close Maccallum & Taub '72

S= /d“x\/?g [R+ L] T = (p+ p)uyuy + pgu
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Vary the action space-time symmetry
G = Tw spatially homogeneous
space-time symmetry Reduced action
spatially homogeneous vary th(i reduced action
equations of motion # equations of motion

for Class B group Eg. Bianchi Il



Why is this result relevant for cosmological perturbations?

Several methods employed to study perturbations:

Q Einstein equations [Lifshitz 1946]
Q@ Covariant equations [Hawking 1966]
© ADM equations [Bardeen 1980]

@ Action [Lukash 1980]
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Why is this result relevant for cosmological perturbations?

These methods can be clubbed into two approaches:

S = /d4X\/—7g[R+£M]

N ——

G/W = T,W guw = g;(uo/) + 5(1)8-/“, + ...

solve order-by-order Bediiead ae e

G/(L(l)/) = T;S?/) expand up to second or

5(1)GW -5 T third order
approach by Lifshitz, Bardeen approach by Lukash

For non-canonical scalar fields, unclear
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Non-canonical scalars — Setup Appignani etal '10

e Non-canonical scalar field Lagrangian:

L=P(X,¢) where 2X=V99pV,0¢
ds? = dt? — a*(t) dx?

e Setup

O freeze all the metric perturbations

separate from the gauge ambiguities [Malik & Wands '10]

@ Look at the perturbations of the scalar field.

B(t,x) = ¢, (t) + 6 (t,x) + 6 ¢

Interested in second order perturbations



Perturbed tensor and ADM approach Appignani etal '10

- Expand T,, to second order, T,, = T(O) + 5(1)T v+ 6(2)T
¢2
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Perturbed tensor and ADM approach Appignani etal '10

Salient features
e The ratio of coefficient of (5(]5?,- and 62 can be related to the square
of speed. For 6(2)T00
(0) 0) ;2
P~ —P
Cg = —5 X @) .2XX¢O G Christopherson & Malik '09
PX +4PXX¢O+P qzsO

XXX

e For the canonical scalar field L = X — V(¢),

+ 5(/)72’
2 2 32

Y
AT _ 09°

V :
+ TO(/) 5¢? positive definite cg =1
e For any other Lagrangian, (5(2)T00 is not positive; cg can be negative

Discussion for specific cases in the following slides



Symmetry reduced action Appignani etal '10

« Canonical Hamiltonian corresponding to perturbed matter field action:
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Symmetry reduced action Appignani etal '10

« Canonical Hamiltonian corresponding to perturbed matter field action:
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Salient features

e Speed of perturbation

0
P()

2 X

i = = Garriga and Mukhanov '99
PX + PXXd)O

° 6(2)7‘[ = (5(2)T00 ONLY for Canonical scalar field.

For non-canonical fields, the second order perturbed density from two
approaches are not identical

e 5 = ¢} for canonical scalar field



Examples Appignani etal '10
Power-law k-inflation Armendariz-Picon et al '99
5 £\ 2/(3) 2
« P=£(g)(X*~X) 4ﬂz%<) v elo, ]
to 3

e From background equations, we get

do = 4—2y O _ 2—~ © [1 2}
07 Va3, 4—3~5 2’3
e Speed of perturbations from the two approaches are
(0) (0)
2X'+1 2X -1
2 2 2 2
Q=5 =<0 GG=—m - =—>c>0
O 18xP9 -1 0 Pex@-1 !

6(2)T00 has potential instability 5“H is stable



Examples

Appignani etal '10

Lagrangian Constraint from | Constraint from
background Il order
power-law F(o)(X2 — X) x> 1 All values of X"
k-inflation are unstable
Tachyon —V(p)v1—-2X X9 < 3 X9 < 1
1 ‘ (0) 1 (0) 1
DBI ) 1-2 f\(@)X X< 57(d0) X< a7 (9)




Conclusions

e At second order, the perturbed second order
stress-tensor and canonical Hamiltonian are different.

They are identical only for the canonical scalar field
e As in the case of gravity, the non-linear nature of

non-canonical scalar fields is the key reason for this
apparent discrepancy.

e Imperative to obtain f,, by other approaches



