Ambiguities in second-order cosmological perturbations for non-canonical scalar fields

S. Shankaranarayanan

IISER-Trivandrum

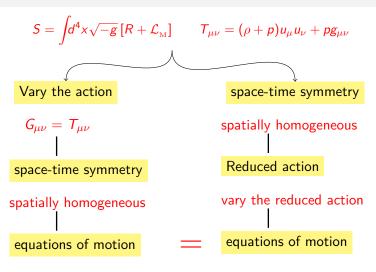
With: C. Appignani, R. Casadio JCAP 03 (2010) 010

$$S = \int \!\! d^4x \sqrt{-g} \left[R + \mathcal{L}_{_{\mathrm{M}}}
ight] \qquad T_{\mu
u} = (
ho + p) u_{\mu} u_{
u} + p g_{\mu
u}$$

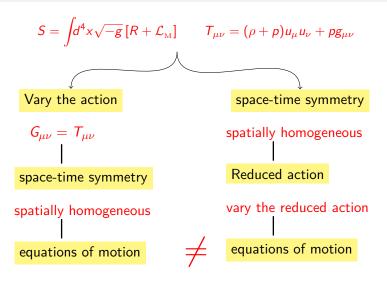
$$S = \int\!\! d^4x \sqrt{-g} \left[R + \mathcal{L}_{_{\rm M}}\right] \qquad T_{\mu\nu} = (\rho + p) u_\mu u_\nu + p g_{\mu\nu}$$
 Vary the action
$$G_{\mu\nu} = T_{\mu\nu}$$
 space-time symmetry spatially homogeneous equations of motion

$$T_{\mu\nu} = (\rho + p)u_{\mu}u_{\nu} + pg_{\mu\nu}$$

$$S = \int\!\! d^4x \sqrt{-g} \left[R + \mathcal{L}_{_{\rm M}}\right] \qquad T_{\mu\nu} = (\rho + p) u_\mu u_\nu + p g_{\mu\nu}$$
 Vary the action space-time symmetry
$$G_{\mu\nu} = T_{\mu\nu} \qquad \text{spatially homogeneous}$$
 spatially homogeneous vary the reduced action equations of motion equations of motion



for Class A group Eg. FRW, Bianchi III



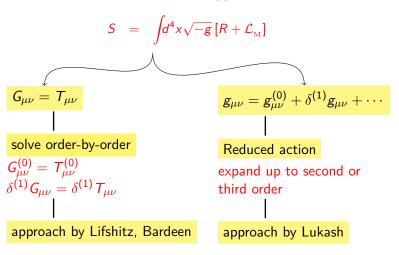
for Class B group Eg. Bianchi II

Several methods employed to study perturbations:

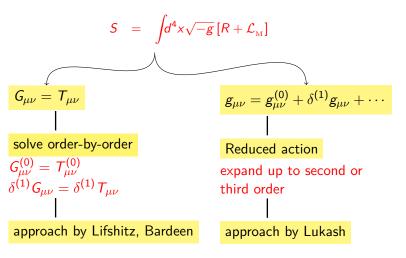
Einstein equations	[Lifshitz 1946]
--------------------	-----------------

- ② Covariant equations [Hawking 1966]
- **3** ADM equations [Bardeen 1980]
- Action [Lukash 1980]

These methods can be clubbed into two approaches:

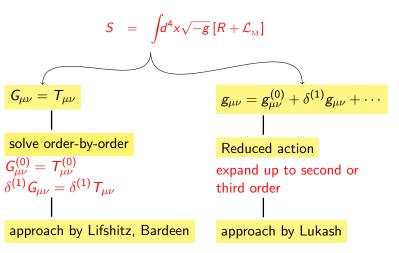


These methods can be clubbed into two approaches:



For canonical scalar field, these approaches agree up to second order

These methods can be clubbed into two approaches:



For non-canonical scalar fields, unclear

Non-canonical scalar field Lagrangian:

$$\mathcal{L} = P(X, \phi)$$
 where $2X = \nabla^{\alpha}\phi \nabla_{\alpha}\phi$
 $ds^2 = dt^2 - a^2(t) dx^2$

• Non-canonical scalar field Lagrangian:

$$\mathcal{L} = P(X, \phi)$$
 where $2X = \nabla^{\alpha}\phi \nabla_{\alpha}\phi$
 $ds^2 = dt^2 - a^2(t) d\mathbf{x}^2$

- Setup
 - freeze all the metric perturbations
 separate from the gauge ambiguities [Malik & Wands '10]
 - 2 Look at the perturbations of the scalar field.

$$\phi(t, \mathbf{x}) = \phi_0(t) + \delta\phi(t, \mathbf{x}) + \delta^{(2)}\phi$$

Interested in second order perturbations

• Expand $T_{\mu\nu}$ to second order, $T_{\mu\nu} = T_{\mu\nu}^{(0)} + \delta^{(1)}T_{\mu\nu} + \delta^{(2)}T_{\mu\nu}$ $\delta^{(2)}T_{00} = \left(P_x^{(0)} + 4P_{xx}^{(0)}\dot{\phi}_0^2 + P_{xxx}^{(0)}\dot{\phi}_0^4\right)\frac{\delta\dot{\phi}^2}{2} + \left(P_x^{(0)} - P_{xx}^{(0)}\dot{\phi}_0^2\right)\frac{\delta\phi_{,i}^2}{2}$ $-\left(P_{X\phi}^{(0)}-P_{X\phi\phi}^{(0)}\dot{\phi}_{0}^{2}\right)\frac{\delta\phi^{2}}{2}+\left(P_{X\phi}^{(0)}+P_{XX\phi}^{(0)}\dot{\phi}_{0}^{2}\right)\dot{\phi}_{0}\,\delta\phi\,\delta\dot{\phi}+F[\delta^{(2)}\phi]$ $\delta^{(2)} T_{ii} = \frac{a^2}{2} \left(P_x^{(0)} + P_{xx}^{(0)} \dot{\phi}_0^2 \right) \delta \dot{\phi}^2 + \frac{P_x^{(0)}}{2} \delta \phi_{,i}^2$ $+\frac{a^2}{2}\left[2P_{x,\dot{\phi}}^{(0)}\dot{\phi}_0\delta\phi\delta\dot{\phi}+P_{\phi,\dot{\phi}}^{(0)}\delta\phi^2\right]+G[\delta^{(2)}\phi]$

Salient features

• The ratio of coefficient of $\delta\phi_{,i}^2$ and $\delta\dot{\phi}^2$ can be related to the square of speed. For $\delta^{^{(2)}}T_{00}$

$$c_0^2 = \frac{P_X^{(0)} - P_{XX}^{(0)} \dot{\phi}_0^2}{P_X^{(0)} + 4 P_{XX}^{(0)} \dot{\phi}_0^2 + P_{XXX}^{(0)} \dot{\phi}_0^4}$$
 Christopherson & Malik '09

• For the canonical scalar field $L = X - V(\phi)$,

$$\delta^{(2)} T_{00}^{(\mathrm{KG})} = rac{\delta \dot{\phi}^2}{2} + rac{\delta \phi_{,i}^2}{2 \, \mathit{a}^2} + rac{V_{\phi\phi}}{2} \, \delta \phi^2 \qquad ext{positive definite} \qquad c_0^2 = 1$$

• For any other Lagrangian, $\delta^{(2)}T_{00}$ is not positive; c_0^2 can be negative

Discussion for specific cases in the following slides

• Canonical Hamiltonian corresponding to perturbed matter field action:

$$\delta^{(2)}\mathcal{H} = \frac{a^3}{2} \left[\left(P_X^{(0)} + P_{XX}^{(0)} \dot{\phi}_0^2 \right) \delta \dot{\phi}_k^2 + \left(\frac{k^2}{a^2} P_X^{(0)} - P_{\phi\phi}^{(0)} \right) \delta \phi_k^2 \right]$$

• Canonical Hamiltonian corresponding to perturbed matter field action:

$$\delta^{(2)}\mathcal{H} = \frac{a^3}{2} \left[\left(P_X^{(0)} + P_{XX}^{(0)} \dot{\phi}_0^2 \right) \delta \dot{\phi}_k^2 + \left(\frac{k^2}{a^2} P_X^{(0)} - P_{\phi\phi}^{(0)} \right) \delta \phi_k^2 \right]$$

Salient features

Speed of perturbation

$$c_1^2 = \frac{P_X^{(0)}}{P_X^{(0)} + P_{XX}^{(0)} \dot{\phi}_0^2}$$

Garriga and Mukhanov '99

• $\delta^{(2)}\mathcal{H} = \delta^{(2)}T_{00}$ ONLY for Canonical scalar field.

For non-canonical fields, the second order perturbed density from two approaches are not identical

• $c_0^2 = c_1^2$ for canonical scalar field

Power-law k-inflation

Armendariz-Picon et al '99

•
$$P = f(\phi)\left(X^2 - X\right)$$
 $a(t) = a_0\left(\frac{t}{t_0}\right)^{2/(3\gamma)}$ $\gamma \in [0, \frac{2}{3}]$

• From background equations, we get

$$\dot{\phi}_0 = \sqrt{\frac{4-2\gamma}{4-3\gamma}} \qquad X^{(0)} = \frac{2-\gamma}{4-3\gamma} \qquad X^{(0)} \in \left[\frac{1}{2}, \frac{2}{3}\right]$$

• Speed of perturbations from the two approaches are

$$c_0^2 = -\frac{2X^{(0)} + 1}{18X^{(0)} - 1} \implies c_0^2 < 0; \qquad c_1^2 = \frac{2X^{(0)} - 1}{6X^{(0)} - 1} \implies c_1^2 > 0$$

 $\delta^{(2)} T_{00}$ has potential instability $\delta^{(2)} \mathcal{H}$ is stable

	Lagrangian	Constraint from background	Constraint from II order
power-law k-inflation	$f(\phi)(X^2-X)$	$X^{(0)} > \frac{1}{2}$	All values of X ⁽⁰⁾ are unstable
Tachyon	$-V(\phi)\sqrt{1-2X}$	$X^{(0)} < \frac{1}{2}$	$X^{(0)} < \frac{1}{4}$
DBI	$-\frac{1}{f(\phi)}\sqrt{1-2f(\phi)X}$ $\frac{1}{f(\phi)}-V(\phi)$	$X^{(0)}<rac{1}{2f(\phi_0)}$	$X^{(0)}<rac{1}{4f(\phi_0)}$

Conclusions

 At second order, the perturbed second order stress-tensor and canonical Hamiltonian are different.

They are identical only for the canonical scalar field

- As in the case of gravity, the non-linear nature of non-canonical scalar fields is the key reason for this apparent discrepancy.
- Imperative to obtain f_{NL} by other approaches