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Abstract

A well-known result of Erdős-Ginzburg-Ziv [32] says that, given a sequence S of

2n− 1 integers, there is a subsequence S ′ of S with length n such that the sum of

the terms of S ′ is zero modulo n.

Let G be an abelian group of order n, written additively. In [8] we have proved

the following result :

Theorem 1.1 Let G be a finite abelian group of order n, k a positive integer and

0 denote the identity element of G. Let (w1, w2, · · · , wk) be a sequence of integers

where each wi is co-prime to n. Then, given a sequence S : (x1, x2, · · · , xk+r) of

elements of G, where 1 ≤ r ≤ n− 1, if 0 is the most repeated element in S and

k∑
i=1

wixσ(i) 6= 0,

for all permutations σ of [k + r], we have

∣∣∣∣∣
{

k∑
i=1

wixσ(i) : σ is a permutation of [k + r]

}∣∣∣∣∣ ≥ r + 1.

Here, for a positive integer m, the notation [m] is used for the set {1, 2, · · · ,m}.

Given a finite non-empty subset A of integers, a sequence (x1, x2, · · · , xl) of elements

ofG is said to be an A-weighted zero-sum sequence if
∑l

i=1 aixi = 0, for some ai ∈ A.
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Abstract

We have proved some weighted generalization of the result of Bollobás and

Leader.

Let G ∼= Z/nZ, where n is a prime power or an odd integer greater than one

and A = (Z/nZ)∗ (the group of units modulo n). We derived a lower bound on

the number of A-weighted n-sums of a sequence of elements of G which does not

have an A-weighted zero-sum subsequence of length n. In what follows, ϕ(m) is the

number of integers t, 1 ≤ t ≤ m which are co-prime to m. Further, by Ω(m) (resp.

ω(m)) we denote the number of prime factors of m counted with multiplicity (resp.

without multiplicity). We have proved the following results in [26].

Theorem 2.1 Let p be any prime, α ≥ r ≥ 1 and A = (Z/pαZ)∗, the set of all

units modulo pα. Given a sequence X = {xi}p
α+r
i=1 of integers, let

S =

{∑
i∈I

wixi (mod pα) : I ⊆ [pα + r] with |I| = pα, wi ∈ A

}
.

If 0 /∈ S, then |S| ≥ pr+1 − pr.

Theorem 2.2 Let n be an odd integer, r ≥ 1 and A = (Z/nZ)∗. Given a sequence

X = {xi}n+r
i=1 of integers, let

S =

{∑
i∈I

wixi (mod n) : I ⊆ [n+ r] with |I| = n, wi ∈ A

}

and 0 /∈ S. Then there exist primes p1, p2, . . . , pr+1 such that

|S| ≥ ϕ(p1)ϕ(p2) · · ·ϕ(pr+1) with p1p2 · · · pr+1|n.

These are related to the results of F. Luca [53] and S. Griffiths [42], who indepen-

dently confirmed a conjecture from [6].
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A similar result is obtained, for general finite abelian group G and the weight set

A = {1,−1}, in [7]. This is a weighted version of the result of Bollobás and Leader

[20].

More precisely, we have proved the following result [7] :

Theorem 3.1 Let G be a finite abelian group of order n and let it be of the form

G ∼= Z/n1Z⊕Z/n2Z⊕· · ·⊕Z/nrZ, where 1 < n1|n2| · · · |nr. Let A = {1,−1} and k

be a natural number satisfying k ≥ 2r
′−1− 1 + r′

2
, where r′ = |{i ∈ [r] : ni is even}|.

Then, given a sequence S = (x1, x2, · · · , xn+k), with xi ∈ G, if S has no A-weighted

zero-sum subsequence of length n, then there are at least 2k+1−δ distinct A-weighted

n-sums, where

δ =

1 if 2 | n

0 otherwise.

As a corollary, one obtains a result of Adhikari et. al. [6], giving the exact value of

EA(G) for the cyclic case and unconditional bounds in many cases.

A result of Yuan and Zeng [71] on the existence of zero-smooth subsequence and

the DeVos-Goddyn-Mohar Theorem [29] are some of the main ingredients of the

proof of Theorem 3.1.
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Synopsis

Thesis Title : Weighted Subsequence Sums in Finite

Abelian Groups

Name : Mohan Chintamani

Supervisor : Prof. S. D. Adhikari

Affiliation : Harish-Chandra Research Institute,

Allahabad

This thesis contains some of my work in zero-sum problems done during my

stay at Harish-Chandra Research Institute, under the supervision of Prof. S. D.

Adhikari.

In 1961, Erdős-Ginzburg-Ziv [32] proved the following theorem :

Erdős-Ginzburg-Ziv (EGZ) Theorem : If S is a sequence of 2n − 1 integers,

then S contains an n length subsequence, sum of whose terms is 0 modulo n.

The EGZ theorem is a corner-stone of the area of zero-sum problems in Combina-

torial Number Theory. It continues to play a central role in the development of the

area of zero-sum theorems and has been a subject of several generalizations.
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Synopsis

Given a sequence S : (a1, a2, · · · , al) of elements of Z/nZ, one can naturally ask the

following question :

How many distinct n-sums (by an n-sum we mean a sum of the terms of a

subsequence of S of length n) can the sequence S have?

By taking a1 = a2 = · · · = al, (in the group Z/nZ), one observes that the only

n-sum is 0. Therefore, one asks the following :

Question. If 0 is not an n-sum, how many distinct n-sums a given sequence can

have ?

The EGZ theorem says that there is no need to look at values of l ≥ 2n − 1

while dealing with the above question. A result of Bollobás and Leader [20] gave a

lower bound on the number of n-sums of such a sequence in terms of the length of

the sequence. Moreover, it gives a natural generalization of the EGZ theorem (as

one obtains the EGZ theorem by taking r = n− 1 in the following statement) :

Bollobás and Leader ([20]) : Let G be an abelian group of order n and r be a

positive integer with r ≤ n− 1. Let S denote the sequence a1, a2, · · · , an+r of n+ r

elements of G. Then, if 0 is not an n-sum, the number of distinct n-sums of S is

at least r + 1.

In an article [24], Y. Caro made the following conjecture :

Conjecture : (Y. Caro) Let n, k be positive integers, n ≥ 2. Let (w1, w2, · · · , wk)

be a sequence of integers such that
∑k

i=1wi ≡ 0 (mod n). Given a sequence S =

(x1, x2, · · · , xn+k−1) of n + k − 1 integers (not necessarily distinct), there exists a

permutation σ of {1, 2, · · · , n+ k − 1} such that

k∑
j=1

wjxσ(j) ≡ 0 (mod n).
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Synopsis

Clearly, taking k = n and wi = 1, ∀i, in above statement implies the EGZ theorem.

In [8], following the method of a simple proof of the above result of Bollobás and

Leader as given by Yu [70], we obtained the following result, which generalizes the

above theorem of Bollobás and Leader, and also supplies a new proof of a particular

case (when (wi, n) = 1, ∀i) of the above mentioned conjecture of Y. Caro (the first

proof of the particular case of the conjecture was given by Hamidoune [47]).

Theorem 1.1 Let G be a finite abelian group of order n and k a positive integer.

Let (w1, w2, · · · , wk) be a sequence of integers where each wi is co-prime to n. Then,

given a sequence S : (x1, x2, · · · , xk+r) of elements of G, where 1 ≤ r ≤ n − 1, if

0 is the most repeated element in S and

k∑
i=1

wixσ(i) 6= 0,

for all permutations σ of [k + r], we have

∣∣∣∣∣
{

k∑
i=1

wixσ(i) : σ is a permutation of [k + r]

}∣∣∣∣∣ ≥ r + 1.

Here, for a positive integer m, by [m] we denote the set {1, 2, · · · ,m}.

If in the above statement, instead of 0, x1 happens to be the most repeated el-

ement, then applying the result on the sequence (a1, a2, · · · , ak+r), where ai =

xi − x1, for all i = 1, 2, · · · , k + r, and observing that translation of a subset of G

by an element does not change its cardinality, one obtains the following :

Corollary 1. Let G be a finite abelian group of order n and k a positive integer.

Let (w1, w2, · · · , wk) be a sequence of integers where each wi is co-prime to n. Then,

given a sequence S : (x1, x2, · · · , xk+r) of elements of G, where 1 ≤ r ≤ n − 1, if
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Synopsis

x1 is the most repeated element in S and

k∑
i=1

wixσ(i) 6=

(
k∑
i=1

wi

)
x1,

for all permutations σ of [k + r], we have∣∣∣∣∣
{

k∑
i=1

wixσ(i) : σ is a permutation of [k + r]

}∣∣∣∣∣ ≥ r + 1.

Further, taking r = n− 1 in Corollary 1, one obtains the following result :

Corollary 2 (Hamidoune [47]). Let G be a finite abelian group of order n and

k a positive integer. Let (w1, w2, · · · , wk) be a sequence of integers where each wi is

co-prime to n. Then, given a sequence S : (x1, x2, · · · , xk+n−1) of elements of G,

if x1 is the most repeated element in S, we have

k∑
i=1

wixσ(i) =

(
k∑
i=1

wi

)
x1,

for some permutation σ of [k + n− 1].

The above result (Corollary 2) was proved by Hamidoune [47], confirming the above

conjecture of Caro in a particular case when (wi, n) = 1, ∀i. For further information

regarding these results we refer to the paper of D. Grynkiewicz [43], where the

conjecture of Caro has been established in full generality.

Shortly after the confirmation of Caro’s conjecture, which introduced the idea

of considering certain weighted subsequence sums, Adhikari and his collaborators

(see [6], [12], [5]) initiated the study of a new kind of weighted zero-sum problems.

Let G be a finite abelian group, written additively, of order n and A be a finite

non-empty subset of integers. For a sequence (x1, x2, · · · , xr) of elements of G, if

there are a1, a2, · · · , ar ∈ A such that
∑r

i=1 aixi = 0, then the sequence is said to
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Synopsis

have 0 as an A-weighted sum, or simply to be an A-weighted zero-sum sequence.

The Davenport constant with weight A, denoted by DA(G), is the least positive

integer t such that any sequence of elements of G with length t has an A-weighted

zero-sum subsequence of length ≥ 1. Similarly, EA(G) is defined to be the least

positive integer t such that any sequence of elements of G with length t has an

A-weighted zero-sum subsequence of length n = |G|.

Adhikari, Chen, Friedlander, Konyagin and Pappalardi [6] obtained the exact

value of DA(G) and EA(G) with A = {1,−1} and G = Z/nZ. In the same paper,

it was conjectured that for A = (Z/nZ)∗ (the group of units modulo n), one has

EA(Z/nZ) = n+ Ω(n),

where Ω(n) denotes the number of prime factors of n counted with multiplicities.

This conjecture was established independently by F. Luca [53] and S. Griffiths [42].

We obtained two results in [26], both of which are weighted versions of the

theorem of Bollobás and Leader ([20]) and are related to the results of F. Luca and

S. Griffiths :

Theorem 2.1 Let p be any prime, α ≥ r ≥ 1 and A = (Z/pαZ)∗, the set of all

units modulo pα. Given a sequence X = {xi}p
α+r
i=1 of integers, let

S =

{∑
i∈I

wixi (mod pα) : I ⊆ [pα + r] with |I| = pα, wi ∈ A

}
.

If 0 /∈ S, then |S| ≥ pr+1 − pr.

Theorem 2.2 Let n be an odd integer, r ≥ 1 and A = (Z/nZ)∗. Given a sequence

X = {xi}n+r
i=1 of integers, let

S =

{∑
i∈I

wixi (mod n) : I ⊆ [n+ r] with |I| = n, wi ∈ A

}
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Synopsis

and 0 /∈ S. Then there exist primes p1, p2, . . . , pr+1 such that

|S| ≥ ϕ(p1)ϕ(p2) · · ·ϕ(pr+1) with p1p2 · · · pr+1|n.

As mentioned before, in [6] Adhikari, Chen, Friedlander, Konyagin and Pap-

palardi proved that,

DA(Z/nZ) = blog2 nc+ 1,

EA(Z/nZ) = n+ blog2 nc,

where A = {1,−1}.

For a finite abelian group G of order n, in [7], we obtained a lower bound on the

number of A-weighted n-sums of a sequence which does not have an A-weighted

zero-sum subsequence of length n, with A = {1,−1}. In particular, this result gives

an alternative proof of the main result from [6], giving the exact value of EA(G),

for the cyclic case and unconditional bounds in many cases.

More precisely, we have proved the following result [7] :

Theorem 3.1 Let G be a finite abelian group of order n and let it be of the form

G ∼= Z/n1Z⊕Z/n2Z⊕· · ·⊕Z/nrZ, where 1 < n1|n2| · · · |nr. Let A = {1,−1} and k

be a natural number satisfying k ≥ 2r
′−1− 1 + r′

2
, where r′ = |{i ∈ [r] : ni is even}|.

Then, given a sequence S = (x1, x2, · · · , xn+k), with xi ∈ G, if S has no A-weighted

zero-sum subsequence of length n, then there are at least 2k+1−δ distinct A-weighted

n-sums, where

δ =

1 if 2 | n

0 otherwise.
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Synopsis

After this brief introduction to my thesis, I would like to indicate how this thesis is

organized.

Each of the chapters is self contained. Chapter 1 is of introductory nature.

It briefly discusses the Erdős-Ginzburg-Ziv Theorem and its generalization due to

Bollobás and Leader [20]. After giving a proof of Scherk’s Theorem [64] (which is

a main tool we used to prove the Theorem 1.1), Chapter 2 presents our work from

[8]. The third chapter begins by defining the generalized Davenport constant and

the EGZ constant (DA(G), EA(G)). It then continues with the discussion about

the relation between these two constants. After proving some lemmas in Section

3.5, we give the proofs (as in [26]) of Theorems 2.1 and 2.2. Finally, Chapter 4

contains the proof of Theorem 3.1 (as in [7]), along with a short section on relating

subsequence sums (of lengths ≥ 1) to |G|-sums of arbitrary sequence .
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Chapter 1

Zero Sum Problems: Early

Development

1.1 Introduction

Let n be a positive integer. Given a sequence a1, a2, · · · , an of n integers, one can

find a subsequence whose sum is a multiple of n. In other words, there exists a

non-empty subset I ⊂ {1, 2, · · · , n} such that,

∑
i∈I

ai ≡ 0 (mod n). (1.1)

Indeed, if one considers the following sums :

x1 = a1,

x2 = a1 + a2,

...

xn = a1 + a2 + · · ·+ an,

5



Chapter 1. Zero Sum Problems: Early Development

then either an xi ≡ 0 (mod n) or by pigeonhole principle, at least two of the

xi’s are equal modulo n, giving (1.1) for some I.

We observe that the above problem is framed in terms of the elements of the group

Z/nZ and is asking for a subsequence whose sum is 0, the identity element of Z/nZ.

Naturally it has generalizations to arbitrary finite abelian groups. This leads to

defining an important group invariant called the Davenport Constant of a group.

In the subsequent chapters we study this constant and its important applications,

apart from its generalizations.

In this chapter we consider the variation of the above problem where one puts some

restrictions on the size of I. In particular, we have the following well-known theorem

due to Erdős, Ginzburg and Ziv [32] :

Theorem 1.1 (EGZ Theorem) Let n be a positive integer. Given a sequence

a1, a2, · · · , a2n−1 of 2n − 1 integers, there exists a subsequence ai1 , ai2 , · · · , ain of

length n such that
n∑
j=1

aij ≡ 0 (mod n).

Henceforth we refer Theorem 1.1 as the EGZ theorem. The EGZ theorem is con-

sidered as a corner-stone of zero-sum problems in Combinatorial Number Theory.

This theorem spurred the growth of the now developing field of zero-sum Ramsey

Theory [23], [30], [65], and has been the subject of various generalizations [8], [13],

[14], [19], [20], [25], [31], [33], [43], [47], [61], [60].

In this chapter, we survey this area, and try to summarize some of the early

developments including the non-abelian case.

Including the paper of Erdős, Ginzburg and Ziv [32], there are several proofs of

the EGZ theorem available in the literature (see [2], [17], [20], [56] for instance). We

6



1.2. The EGZ Theorem

shall present two of these in the next section. In Section 1.3 we state a beautiful

generalization of the EGZ theorem due to Bollobás and Leader [20]. Finally, in

Section 1.4 we consider the non-abelian case of the EGZ theorem.

1.2 The EGZ Theorem

We begin by giving the first proof of Theorem 1.1. Following proof is due to

Zimmerman which was presented by Alon and Dubiner in [17] (see also [2]).

Proof of Theorem 1.1 Firstly we prove the theorem for n = p, a prime. Consider

S to be the following sum,

S =
∑

I⊂[1, 2p−1],
|I|=p

(∑
i∈I

ai

)p−1

.

We claim that

S ≡ 0 (mod p). (1.2)

We can write (after expanding) S as ,

S =
∑
ti≥0,P
ti=p−1

C(t1, · · · , t2p−1)
∏

i∈[1, 2p−1]

atii

.
Consider a typical monomial of S, say C(t1, · · · , t2p−1)

∏
i∈[1, 2p−1]

atii . Observe that

the number of distinct terms ai appearing in this monomial is at most p − 1. The

p-subsets I of [1, 2p − 1] that contributes to its coefficient are precisely those

containing distinct indices of ai’s appearing in this monomial. Further, each such I

contributes equally to the coefficient. If j is the number of distinct terms appearing,

the number of such I’s is

7



Chapter 1. Zero Sum Problems: Early Development

(
2p− 1− j
p− j

)
≡ 0 (mod p).

Thus C(t1, · · · , t2p−1) ≡ 0 (mod p). Since this is true for each monomial occurring

in S, we have proved the claim (1.2).

Now, if possible assume that ∑
i∈I

ai 6≡ 0 (mod p),

for each I ⊂ [1, 2p − 1], |I| = p. By Fermat’s little theorem, for each I ⊂

[1, 2p− 1], |I| = p we have,(∑
i∈I

ai

)p−1

≡ 1 (mod p).

Since the number of p-subsets I of [1, 2p− 1] is
(

2p−1
p

)
, we get

S ≡
(

2p− 1

p

)
(mod p)

≡ 1 (mod p).

This contradicts to (1.2). This establishes Theorem 1.1 for n = p prime.

Now we proceed to prove the theorem for general n, by induction on number of

prime factors (counted with multiplicity) of n. For the case n = 1, there is nothing

to prove and the result is true in the case when n is a prime.

Now, let n > 1 is not a prime and assume that the theorem holds true for all

integers having less number of prime factors than that of n. We write n = mp

where p is a prime and m > 1.

By our assumption, each subsequence of 2p − 1 members of the sequence

a1, a2, · · · , a2n−1 has a subsequence of p elements whose sum is 0 modulo p. From

8



1.2. The EGZ Theorem

the original sequence we go on repeatedly omitting such subsequences of p elements

having sum equal to 0 modulo p. Even after 2m − 2 such sequences are omitted,

we are left with 2pm − 1 − (2m − 2)p = 2p − 1 elements and we can have at least

one more subsequence of p elements with the property that sum of its elements is

equal to 0 modulo p.

Thus, we have found 2m − 1 pairwise disjoint subsets I1, I2, · · · , I2m−1 of

{1, 2, · · · , 2mp − 1} with |Ii| = p and
∑
j∈Ii

aj ≡ 0(mod p) for each i. Consider

the sequence b1, b2, · · · , b2m−1, where for each i ∈ {1, 2, · · · , 2m− 1},

bi =
1

p

∑
j∈Ii

aj.

By the induction hypothesis, there exist distinct indices i1, i2, · · · , im such that
m∑
j=1

bij ≡ 0 (mod m).

Therefore, we have,
m∑
j=1

∑
i∈Ij

ai ≡ 0 (mod pm).

Thus the result is true for n. Hence we are through by induction. 2.

We observe (by above arguments) that it is enough to prove the EGZ theorem for

prime case. For our second proof of the EGZ theorem, we shall need a generalized

version of Cauchy-Davenport Theorem ([22], [27], can also look into [54] or [56] for

instance).

For a finite abelian group G, written additively, and A,B two non-empty subsets

of G, we define the sumset A+B of A and B as :

A+B = {a+ b : a ∈ A, b ∈ B}.

9



Chapter 1. Zero Sum Problems: Early Development

Theorem 1.2 (Cauchy-Davenport) Let A1, A2, · · · , Ah be h non-empty subsets

of Z/pZ, where p is a prime. Then∣∣∣∣ h∑
i=1

Ai

∣∣∣∣ ≥ min

(
p,

h∑
i=1

|Ai| − h+ 1

)
.

Let n = p be a prime and consider the least non-negative representatives modulo

p of the given elements ai’s. i.e 0 ≤ ai ≤ p − 1. If necessary, by rearranging we

assume that

0 ≤ a1 ≤ a2 ≤ · · · ≤ a2p−1 ≤ p− 1.

Further, we can assume that

aj 6= aj+p−1, for j = 1, 2, · · · , p− 1.

For, otherwise we have aj = aj+1 = · · · = aj+p−1, for some j, 1 ≤ j ≤ p− 1 and the

result holds trivially.

Now, applying Theorem 1.2 on the sets

Aj := {aj, aj+p−1}, for j = 1, · · · , p− 1,

we get ∣∣∣∣ p−1∑
j=1

Aj

∣∣∣∣ ≥ min

(
p,

p−1∑
j=1

|Aj| − (p− 1) + 1

)
= p.

Thus,
p−1∑
j=1

Aj = Z/pZ.

In particular,

−a2p−1 ∈
p−1∑
j=1

Aj

10



1.3. A Generalization of EGZ Theorem

and hence once again we have established the EGZ theorem for the case when n is

a prime. 2

Remark 1.1. Results like the EGZ theorem (like many other zero-sum results) can

also find their place in a larger class of results in combinatorics; for example, in (as

mentioned before) zero-sum Ramsey Theory [23], [30], [65]. These are termed as

Ramsey-type theorems in combinatorics. One can refer to [2] and references given

therin, for similar results.

Remark 1.2. We observe that in Theorem 1.1, the number 2n− 1 is the smallest

positive integer for which the theorem holds. Define E(n) to be the smallest positive

integer t such that given a sequence a1, a2, · · · , at of not necessarily distinct integers,

there exists a set I ⊂ {1, 2, · · · , t} with |I| = n such that
∑

i∈I ai ≡ 0 (mod n).

Theorem 1.1 implies that E(n) ≤ 2n−1. On the other hand, consider the sequence

0, 0, · · · , 0︸ ︷︷ ︸
n−1 times

, 1, 1, · · · , 1︸ ︷︷ ︸
n−1 times

of 2n−2 integers modulo n. Clearly, this sequence does not have any subsequence of

n elements sum of whose elements is 0 modulo n. Thus E(n) ≥ 2n−2+1 = 2n−1.

Hence we have E(n) = 2n − 1. The constant E(n) and its generalization will be

studied in the subsequent chapters (see Sections 3.2 & 3.4 of Chapter 3).

1.3 A Generalization of EGZ Theorem

In this section we mention one of the beautiful generalization of the EGZ theorem,

due to Bollobás and Leader [20]. Let G be a finite abelian group. In Theorem 1.1,

the authors study only sequences of length 2n − 1 and subsequences of length n,

where G = Z/nZ and |G| = n. Perhaps the most obvious attempt to generalization

11



Chapter 1. Zero Sum Problems: Early Development

would be to consider different length sequences and subsequences of elements of G.

Indeed, Bollobás and Leader in [20] found a nice generalization of Theorem 1.1 by

considering subsequences of length |G| from an arbitrary sequence.

For a sequence x1, x2, · · · , xm of elements of G and 1 ≤ t ≤ m, by an t-sum we

mean a sum xi1 + · · ·+ xit of a subsequence of length t.

The result of Bollobás and Leader [20] mentioned above is the following :

Theorem 1.3 ( Bollobás and Leader) Let G be an abelian group of order n and

r be a positive integer. Let S denote the sequence a1, a2, · · · , an+r of n + r not

necessarily distinct elements of G. Then, if 0 is not an n-sum, the number of

distinct n-sums of S is at least r + 1.

By taking r = n− 1, one obtains the EGZ theorem from the above result. In fact,

we have a generalization of it to finite abelian groups, as follows :

Theorem 1.4 Let G be an abelian group of order n. Given any sequence

x1, x2, · · · , x2n−1 of 2n− 1 elements of G, there exists a subsequence of n elements

whose sum is the identity element 0 of G.

However, it is not difficult to see that using structure theorem for finite abelian

groups and arguing by induction on the rank of G, one can derive Theorem 1.4

from the EGZ theorem itself.

Remark 1.3. We define the constant E(G) for a finite abelian group G to be the

least integer t with the property that given any sequence of elements of G of length

t, it has a subsequence of length |G| whose elements sums up to the 0 (the identity

element of G). In particular, in Remark 1.2, using Theorem 1.1, we observed that

E(Z/nZ) = E(n) = 2n− 1.

12



1.3. A Generalization of EGZ Theorem

From Theorem 1.4, it follows that E(G) ≤ 2|G|− 1, for any finite abelian group

G. However, for a non-cyclic abelian group G of order n, E(G) need not be equal

to 2n−1. In this direction, a result of Alon, Bialostocki and Caro [16] says that for

a non-cyclic abelian group G of order n, E(G) ≤ 3n
2

and the bound 3n
2

is realized

only by groups of the form Z/2Z⊕Z/2mZ. Subsequently, Y. Caro [23] showed that

if a non-cyclic abelian group G of order n is not of the form Z/2Z⊕ Z/2mZ, then

E(G) ≤ 4n
3

+1 and this bound is realized only by groups of the form Z/3Z⊕Z/3mZ.

Further generalizations of the same nature have been obtained by Ordaz and

Quiroz [62]. One of the generalizations of Theorem 1.3 obtained by Hamidoune [48]

will be discussed in Chapter 3.

Now, we give a brief sketch of the proof of Theorem 1.3.

Proof of Theorem 1.3 (Sketch) :

We may clearly assume that r < n. For an abelian group G and elements

b1, b2, · · · , br ∈ G, we denote by S(b1, b2, · · · , br) the set,

S(b1, b2, · · · , br) =

{∑
i∈I

bi : I ⊂ {1, 2, · · · , r}
}
,

of all 2r possible sums (including the empty sum, which we define to be 0). We

begin by considering that under what conditions the set S(b1, b2, · · · , br) is large.

For example, if order of each of the bi’s is co-prime to n(= |G|), then it follows by

induction on r that |S(b1, b2, · · · , br)| ≥ r + 1. The relevance for the proof is that,

for the given sequence, the set

{a1, a2}+ {a3, a4}+ · · ·+ {a2r−1, a2r}+ a2r+1 + · · ·+ an+r

which is a subset of the set of all n-sums of the given sequence, has precisely

|S(a1 − a2, a3 − a4, · · · , a2r−1 − a2r)| elements. Bollobás and Leader proved the

13



Chapter 1. Zero Sum Problems: Early Development

following lemma, which simply asserts that |S(b1, b2, · · · , br)| ≥ r+ 1 unless the bi’s

are very densely concentrated on some (proper) subgroup of G.

Lemma 1.1 Let G be a finite abelian group, and let b1, b2, · · · , br be elements of G.

Suppose that, for each subgroup H of G, the number of bi’s belonging to H is less

than r + 1− r/|H|. Then |S(b1, b2, · · · , br)| ≥ r + 1.

Now, we try to find disjoint pairs of the ai’s whose differences bi are not too

highly concentrated in any subgroup of G; in other words, we can apply the above

lemma. If such pairs exist then using the above arguments, we get the result.

Otherwise, too many of the ai’s lie in some coset of some subgroup H, and then

one could apply the induction, by looking at H, thus completing the proof. 2.

The original proof [20] of Theorem 1.3 is somewhat difficult and complicated.

A simple combinatorial proof of the above theorem has been given by Yu [70] using

the following result of Scherk [64] (see also [51] and Theorem 15′ of Chap. 1 in [46]).

Theorem 1.5 (P. Scherk) Let A and B be two subsets of an abelian group G of

order n. Suppose 0 ∈ A ∩ B and that the only solution of the equation a + b =

0, a ∈ A, b ∈ B is a = 0 = b. Then,

|A+B| ≥ |A|+ |B| − 1.

This result of Scherk is an analogue of the Cauchy-Davenport Theorem (Theo-

rem 1.2).

Remark 1.4. It is not difficult to observe that with the assumption in the Theorem

1.5, the number |A|+|B|−1 cannot exceed |G|. Indeed, letting −A = {−a : a ∈ A},

we clearly have |A| = |(−A)|. Then assuming |A|+ |B| − 1 > |G|, we get

14



1.3. A Generalization of EGZ Theorem

|G| ≥ |(−A) ∪B|

= |(−A)|+ |B| − |(−A) ∩B|

> |G|+ 1− |(−A) ∩B|,

⇒ |(−A) ∩B| > 1.

Thus, for some x ∈ A, y ∈ B, with x 6= 0 6= y we have x+ y = 0. Contradicting to

the hypothesis.

Remark 1.5. In [8], following the method of a simple proof of the above result

of Bollobás and Leader as given by Yu [70], we obtained a result, which will be

presented in the next chapter. This result gives a generalization of the EGZ theorem,

and imply a result of Hamidoune [47], which had confirmed a conjecture (Conjecture

2.1 of Chapter 2) of Y. Caro [24] (see also [43], for instance) in a special case. For

further information regarding these results, we refer to the paper of Grynkiewicz

[43], where the above mentioned conjecture of Y. Caro has been established in full

generality. We will discuss this in Chapter 2.

As Theorem 1.5 is a tool we used in [8], we shall give one of its proof in Chapter 2.

We shall end this section by giving a result due to W. D. Gao which, in a particular

case (when n is prime), gives more information than the EGZ theorem.

Theorem 1.6 (Gao) For a cyclic group G of prime order p and any element a of

G, given an arbitrary sequence S : {g1, g2, · · · , g2p−1} of 2p − 1 elements of G, if

r(S, a) denotes the number of the subsequences of S of length exactly p whose sum

is a, then

r(S, a) ≡

1 (mod p) if a = 0

0 (mod p) otherwise.

15
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1.4 The Non-Abelian Case

As observed in Section 1.3, the EGZ theorem holds true for any finite abelian group

G, viz Theorem 1.4. Its natural to ask the validity of Theorem 1.4 for arbitrary

finite groups, not necessarily abelian.

For a finite solvable group G, we have the following result [66] :

Theorem 1.7 Let G be a finite solvable group (written additively) of order n. Then

given any sequence x1, x2, · · · , x2n−1 of 2n− 1 elements of G, there exist n distinct

indices i1, i2, · · · , in such that

xi1 + xi2 + · · ·+ xin = 0.

As mentioned in [66], one can obtain the above result again by using Theorem 1.1

and arguments used to derive general case of it from the ‘prime’ case, by induction

on the length k of a minimal abelian series of subgroups (a series (0) = G0 ⊂ G1 ⊂

· · · ⊂ Gk = G of subgroups of G is said to be abelian series if each Gi is a normal

subgroup of Gi+1 and Gi+1/Gi is abelian) for G,

J. E. Olson in [60], generalizing a result of H. B. Mann [55], showed that above

result holds for any finite group G (not necessarily solvable).

We note that above result of Olson [60] (like Theorem 1.7) does not guarantee a

subsequence of given sequence sum of whose elements is 0, rather a permutation

of a subsequence of length n will do so. However, it is conjectured [60] that there

must be a subsequence summing up to 0. In other words :

Conjecture 5.1 (Olson) Let G be a finite group of order n. Given any sequence

x1, x2, · · · , x2n−1 of 2n − 1 elements of G, there exist n indices i1, i2, · · · , in with

1 ≤ i1 < i2 < · · · < in ≤ 2n− 1 such that

xi1 + xi2 + · · ·+ xin = 0.
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1.4. The Non-Abelian Case

This is not known even for solvable groups. However, by pigeonhole principle,

one can see that, if we take the length of the sequence to be n(n−1) + 1 (instead of

2n−1), then at least one element is repeated n times and the assertion of Conjecture

5.1 holds.
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Chapter 2

A Weighted Erdős-Ginzburg-Ziv

Theorem

2.1 Introduction

In this chapter, as mentioned in Remark 1.5 (of Chapter 1), we shall present our

results as in [8].

Let G be a finite abelian group, written additively. In what follows, we use the

notation [n] to denote the set {1, 2, · · · , n}. Also for m ∈ Z, A ⊂ G by mA we

denote the set {ma : a ∈ A}. We recall (Section 1.3 of Chapter 1) that, for a

sequence x1, x2, · · · , xm of elements of G and 1 ≤ t ≤ m, by an t-sum we mean a

sum xi1 + · · ·+ xit of a subsequence of length t. Further, if W : (w1, w2, · · · , wt) is

a sequence of integers, by a t-sum with weights from W we mean a sum of the form

w1xi1 + · · ·+ wtxit .

In an article [24], Y. Caro made the following conjecture :

Conjecture 2.1(Y. Caro) Let n, k be positive integers, n ≥ 2. Let
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Chapter 2. A Weighted Erdős-Ginzburg-Ziv Theorem

(w1, w2, · · · , wk) be a sequence of integers such that
∑k

i=1 wi ≡ 0 (mod n). Given

a sequence S : x1, x2, · · · , xn+k−1 of n + k − 1 integers, there exists a permutation

σ of {1, 2, · · · , n+ k − 1} such that

k∑
j=1

wjxσ(j) ≡ 0 (mod n).

Clearly, taking k = n and wi = 1, ∀i, in the above statement implies the EGZ

theorem (Theorem 1.1).

N. Alon proved Conjecture 2.1 in the case k = n, with n prime. In 1996

Hamidoune [47] proved the above conjecture in a particular case where wi’s are

co-prime to n, but in a more general abelian group setting. Until 2004 no further

progress was made on this conjecture. W. Gao and X. Jin [37] established the above

conjecture in the case when n is a square of a prime. Finally, D. Grynkiewicz [43]

settled Conjecture 2.1 completely.

Remark 2.1. We can not expect (xσ(j)) (where σ is as in the statement of the

Conjecture 2.1) to be a subsequence (in order) of S. For, we take n = k and the

following sequences (see [43]):

(w1, w2, · · · , wn) = (1, 1, · · · , 1︸ ︷︷ ︸
n−2 times

, 0, 2),

(x1, x2, · · · , xn+n−1) = (−1, 0, · · · , 0︸ ︷︷ ︸
n−1 times

, 1, · · · , 1︸ ︷︷ ︸
n−1 times

).

In [8], we proved the following weighted generalization of Theorem 1.3 of Bollobás

and Leader ([20]).

Theorem 2.1 Let G be a finite abelian group of order n and k a positive integer.

Let (w1, w2, · · · , wk) be a sequence of integers where each wi is co-prime to n. Then,
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given a sequence S : (x1, x2, · · · , xk+r) of elements of G, where 1 ≤ r ≤ n − 1, if

0 is the most repeated element in S and

k∑
i=1

wixσ(i) 6= 0, (2.1)

for all permutations σ of [k + r], we have

∣∣∣∣∣
{

k∑
i=1

wixσ(i) : σ is a permutation of [k + r]

}∣∣∣∣∣ ≥ r + 1.

We shall give the proof of the above theorem in the next section. Now, we give

some of the corollaries. Its trivial to observe that for any A ⊂ G, x ∈ G we have

|A − x| = |A|. Thus, we have the following corollary, by applying Theorem 2.1 to

the sequence (x1 − x1, x2 − x1, · · · , xk+r − x1) :

Corollary 1. Let G be a finite abelian group of order n and k a positive integer.

Let (w1, w2, · · · , wk) be a sequence of integers where each wi is co-prime to n. Then,

given a sequence S : (x1, x2, · · · , xk+r) of elements of G, where 1 ≤ r ≤ n − 1, if

x1 is the most repeated element in S and

k∑
i=1

wixσ(i) 6=

(
k∑
i=1

wi

)
x1,

for all permutations σ of [k + r], we have∣∣∣∣∣
{

k∑
i=1

wixσ(i) : σ is a permutation of [k + r]

}∣∣∣∣∣ ≥ r + 1.

In Corollary 1, taking r = n− 2 and letting

α =

(
k∑
i=1

wi

)
x1,
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if
k∑
i=1

wixσ(i) 6= α,

for all permutations σ of [k+n− 2], then for each element β ∈ G \ {α} there exists

a permutation τ of [k + n− 2] such that

β =
k∑
i=1

wixτ(i).

Similarly, taking r = n− 1 we obtain the following corollary :

Corollary 2 (Hamidoune [47]). Let G be a finite abelian group of order n and

k a positive integer. Let (w1, w2, · · · , wk) be a sequence of integers where each wi is

co-prime to n. Then, given a sequence S : (x1, x2, · · · , xk+n−1) of elements of G,

if x1 is the most repeated element in S, we have

k∑
i=1

wixσ(i) =

(
k∑
i=1

wi

)
x1,

for some permutation σ of [k + n− 1]. In particular, if wi’s satisfy the equation

k∑
i=1

wi ≡ 0 (mod n),

then for some permutation σ of [k + n− 1], we have,

k∑
i=1

wixσ(i) = 0.

Remark 2.2. Taking k = n and wi = 1 for each i, the set{
k∑
i=1

wixσ(i) : σ is a permutation of [k + r]

}
is clearly a subset of the set of all n-sums of given sequence; thus Theorem 2.1 imply

Theorem 1.3 of Bollobás and Leader ([20]). Clearly, each of the above corollaries
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gives a generalization of the EGZ theorem (also of Theorem 1.4), simply by taking

k = n, r = n − 1 and wi = 1, for i = 1, 2, · · · , k. Moreover, Corollary 2 implies a

particular case (when (wi, n) = 1 ∀ i) of Conjecture 2.1.

2.2 Proof of Theorem 1.5 (Scherk’s Theorem)

In this section we shall present a proof of Theorem 1.5 as given in [64].

Recall that we have to show the following inequality,

|A+B| ≥ |A|+ |B| − 1. (2.2)

We argue by induction on |B|.

For |B| = 1, theorem is obvious. Assume the result for |B| ≤ m − 1, and let

|B| = m > 1.

Let b0 ∈ B, b0 6= 0. Then from the hypothesis on A,B we have 0 6∈ A + b0. Since

|A| = |A+ b0| and 0 ∈ A, there exists a0 ∈ A such that a0 + b0 6∈ A.

Define the following sets :

B1 = {y ∈ B : a0 + y 6∈ A},

A1 = {a0 + y : y ∈ B1}.

Since 0 6∈ B1 and b0 ∈ B1 we get

0 < |A1| = |B1| < |B|. (2.3)

Thus, for the sets

A2 := A ∪ A1,

and B2 := B \B1,
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we have from (2.3),

0 ∈ B2 ( B ; 0 ∈ A ⊂ A2. (2.4)

Further,

|A2|+ |B2| = |A|+ |A1|+ |B2|

= |A|+ |B1|+ |B2|

= |A|+ |B|.

By definition of sets A2 and B2, A2 + B2 ⊂ A + B. Suppose that x + y = 0 holds

for some x ∈ A2 \ {0}, y ∈ B2. Then by hypothesis on A and B, we have x ∈ A1.

So there exists y′ ∈ B1 such that x = a0 + y′. Then, using definition of B2,

0 = x+ y = (a0 + y) + y′ ∈ A+B.

This contradicts the hypothesis. It follows that the only solution of x+ y = 0, with

x ∈ A2, y ∈ B2 is x = 0 = y. Hence in view of (2.4), we can apply induction to the

sets A2, B2 and get

|A+B| ≥ |A2 +B2|

≥ |A2|+ |B2| − 1

= |A|+ |B| − 1.

Hence we are through, by induction. 2.

2.3 Proof of Theorem 2.1

We have given a sequence S : (x1, x2, · · · , xk+r). Let L = {i : xi = 0} and |L| = l.

By the hypothesis (2.1) on S we have 1 ≤ l ≤ k − 1.

Let I ⊂ [k + r] \ L be such that |I| = s is maximal subject to the conditions
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• s ≤ k − 1 and

• there is an injective map f : I → [k] such that∑
i∈I

wf(i)xi = 0.

It is possible that I is empty.

We note that

l + s ≤ k − 1. (2.5)

For, if l + s ≥ k then l ≥ k − s(≥ 1). By selecting k − s distinct indices

i1, i2, · · · , ik−s ∈ L we have

wj1xi1 + wj2xi2 + · · ·+ wjk−sxik−s +
∑
i∈I

wf(i)xi = 0,

where {j1, j2, · · · , jk−s} = [k] \ {f(i) : i ∈ I}. This is a contradiction to the

hypothesis (2.1) on S.

Now, from (2.5) we have,

|[k + r] \ (L ∪ I)| = k + r − (l + s)

≥ k + r − (k − 1)

= r + 1.

Therefore, there is a subset J ⊂ [k + r] \ (L ∪ I) such that |J | = r. Let h be the

maximum number of repetition of an element in the sequence X = (xj : j ∈ J).

Recall that we have 0 is the most repeated element in S and the definition of L, we

have h ≤ l. Thus from (2.5), we get,

h+ s ≤ l + s ≤ k − 1. (2.6)
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Let X = X1 ∪X2 ∪ · · · ∪Xh be a partition of the sequence X into h non-empty

subsets, that is, in a particular Xi no element is repeated (Xi’s need not be disjoint).

More precisely this is done as follows : Let x be an element in X which is repeated

h times (existence of such an element follows by definition of h). We put x in each

Xi. Any other element, say y, occurring in X appears m ≤ h times and we put y in

Xi, 1 ≤ i ≤ m. (Thus Xi’s can be treated as sets). We continue this process until

all the elements of X are exhausted.

So,

|X1|+ |X2|+ · · ·+ |Xh| = length of X = r. (2.7)

From (2.6), h < k − s. Let w′1, w
′
2, · · · , w′k−s be the subsequence (wi : i ∈ I ′) where

,

I ′ = {j ∈ [k] : j 6= f(i) ∀ i ∈ I}.

We claim that

0 6∈ w′1X1 + w′2X2 + · · ·+ w′jXj, (2.8)

for each j, 1 ≤ j ≤ h.

If possible, suppose that

0 = w′1xi1 + w′2xi2 + · · ·+ w′jxij ,

for some xit ∈ Xt, t = 1, 2, · · · , j. Then we have,

w′1xi1 + w′2xi2 + · · ·+ w′jxij +
∑
i∈I

wf(i)xi = 0. (2.9)

By (2.6), it follows that

|I| < |I ∪ {i1, i2, · · · , ij}|

= s+ j

≤ h+ s

≤ k − 1.
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Thus, in view of (2.9), we are led to a contradiction to the maximality of I, by

replacing I with I ∪ {i1, i2, · · · , ij} (⊂ [k + r] \ L).

This establishes the claim (2.8).

Writting X ′t = Xt ∪ {0}, for t = 1, 2, · · · , h, and observing that |cX ′t| = |X ′t|, for

any integer c co-prime to n, from (2.7), we have

h∑
i=1

|w′iX ′i| = r + h.

Therefore, by repeated application of Theorem 1.5(of Chapter 1) of Scherk, we get

(note that by (2.8) hypothesis of Theorem 1.5 is satisfied each time),

∣∣∣∣∣
h∑
i=1

w′iX
′
i

∣∣∣∣∣ ≥ min

{
n,

h∑
i=1

w′iX
′
i − (h− 1)

}
= min{n, r + 1}

= r + 1.

Therefore, if we append a subsequence of h zeros from (xi : i ∈ L) to the subsequence

X : (xj : j ∈ J) we get a subsequence of length |J | + h = h + r having at least

(r + 1) h-sums with weights w′i. So, adding a weighted sum of the remaining

k + r − (r + h) = k − h elements of the sequence S with the remaining (unused)

k − h weights to each of the above (r + 1) h-sums, we get at least (r + 1) k-sums

with given weights wi’s.

This completes the proof. 2.
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Chapter 3

Weighted Subsequence Sums I

3.1 Introduction.

In this chapter, we begin by defining two combinatorial group invariants, namely the

Davenport constant and the EGZ constant, for a finite abelian group G and their

generalizations. We mention few of the important results regarding this constants,

including a result of Gao [34], establishing a link between them. After defining

subsequence sums in Section 3.3, we shall present our work from [26] in Sections

3.5 and 3.6.

3.2 Generalizations of Two Combinatorial Group

Invariants

Let G be an abelian group of order n, written additively. The Davenport constant

of G, denoted by D(G), is defined to be the smallest natural number t such that

any sequence of elements of G of length t has a non-empty subsequence whose sum
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is zero (the identity element of the group).

Another interesting constant E(G), (as defined in Remark 1.3) is defined to be the

smallest natural number t such that any sequence of elements of G of length t has

a subsequence of length n whose sum is zero. In the case G is cyclic, we simply

denote D(G) (resp. E(G)) by D(n) (resp. E(n)).

By the discussion at the beginning of Chapter 1, we have D(n) ≤ n. Indeed, by

considering the sequence of n − 1 1’s, equality follows, i.e. D(n) = n. From the

EGZ theorem (see Remark 1.2 of Chapter 1), we know that E(n) = 2n− 1.

Remark 3.1. As was observed in some of the early papers on the subject (see [58],

for instance), the problem of finding D(G) has been proposed by H. Davenport [28],

in the connection with the fact that if G is the class group of an algebraic number

filed K, then D(G) is maximal number of prime ideals (with multiplicity) necessary

in the decomposition of an arbitrary irreducible integer in K. However, it should be

noticed that K. Rogers [63] had studied this constant in connection with the same

question (see also [57]).

One of the most important applications of Davenport constant can be seen in the

proof of the infinitude of Carmichael numbers by Alford, Granville and Pomerance

[15]. It was also useful in another paper on Number Theory written by Brüdern

and Godinho [21].

Determining the exact value of above constants for general abelian groups is an

important and difficult question; current state of knowledge is rather limited.

Exact values for D(G) were obtained by J. E. Olson when G is either a p-group

([58]) or a finite abelian group of rank 2 ([59]).

The constants D(G) and E(G) were being studied independently until Gao [34] (see

also [41], Proposition 5.7.9) established the following result connecting these two

invariants.
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E(G) = D(G) + n− 1. (3.1)

It is conjectured in [40], that the relation (3.1) holds for any finite non-abelian

group G, where the authors proved it for the dihedral groups of order 2p, with

large exponent (p ≥ 4001). Further, the conjecture is proved for several classes of

non-abelian groups in [18].

It should be noted that Gao and Thangadurai [39] extended the above result of

Gao [34] to non-abelian groups, with the condition on the repetition of an element.

Generalizations of the constants E(G) and D(G) with weights were considered in

[6] and [12] for finite cyclic groups and later in [5], generalizations for an arbitrary

finite abelian group G were introduced.

Given an abelian group G of order n, and a finite non-empty subset A of integers,

the Davenport constant of G with weights A, denoted by DA(G), is defined to be the

least positive integer t such that for every sequence (x1, · · · , xt) with xi ∈ G, there

exists a non-empty subsequence (xj1 , · · · , xjl) and ai ∈ A such that
∑l

i=1 aixji = 0.

Similarly, EA(G) is defined to be the least positive integer t such that every sequence

of elements of G of length t has a subsequence (xj1 , · · · , xjn) (of length n = |G|)

such that
∑n

i=1 aixji = 0, for some ai ∈ A.

In several papers ([6], [53], [42], [9], [4], [68]) the problem of determining the

exact values of EA(Z/nZ) and DA(Z/nZ) has been taken up for various weight sets

A. For a detailed exposition on this theme, we refer to the expository article [3].

For the case A = {1,−1}, authors in [6] showed that

EA(n) = n+ blog2 nc.

In the same paper [6], it was conjectured that for A = (Z/nZ)∗ (the group of units

modulo n), EA(n) = n+Ω(n). As has been mentioned in the abstract, Ω(n) denotes
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the number of prime factors of n, counted with multiplicities. This conjecture was

settled independently by F. Luca [53] and S. Griffiths [42]. In [26] we obtained

two results which are related to this. We present these results in the subsequent

sections.

3.3 Subsequence Sums

Let m = n+r with r ≥ 1. Given a sequence x1, x2, . . . , xm in Z/nZ and a subset A ⊆

Z/nZ, A 6= ∅, an A-weighted n-sum is a sum of the form a1xi1 +a2xi2 + · · ·+anxin ,

where i1, i2, . . . , in are distinct indices and ai ∈ A. In the case A = {1}, we simply

write an n-sum instead of A-weighted n-sum.

Suppose we are given a sequence S of m elements (not necessarily distinct) of

the group Z/nZ. Clearly, by definition of EA(n), if m ≥ EA(n) then S has an A-

weighted n-sum (subsequence sum) which is 0. So, it is natural to ask the following

question :

Question : If S does not have an A-weighted n-sum which equals 0, then what

can be said about the total number of A-weighted n-sums of the sequence S ?

We took up this question in our work [26], with A = (Z/nZ)∗. We derived

a lower bound on the number of A-weighted n-sums of such a sequence (which

necessarily has length at most EA(n) − 1). This is related to above mentioned

results of F. Luca [53] and S. Griffiths [42].

Before proceeding, we have the following remarks.

Remark 3.2. Using definitions we have the following inequality,

|G|+DA(G)− 1 ≤ EA(G) ≤ 2|G| − 1. (3.2)
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For, the upper bound follows from Theorem 1.4 and the fact that A 6= φ. By the

definition of DA(G), there is a sequence S1 of elements of G with length DA(G)−1,

which do not have an A-weighted sum (of any length ≥ 1) which is 0. By considering

the sequence S : S1, 0, 0, · · · , 0︸ ︷︷ ︸
|G|−1 times

of length |G| + D(G) − 2, we obtain the first

inequality.

Remark 3.3. Let A = {1} and a sequence S : (a1, a2, · · · , an+r) of integers. It

follows from Theorem 1.3 of Bollobás and Leader that if S has no A-weighted n-sum

equaling 0, the number of A-weighted n-sums is at least r + 1. This result is best

possible, as can be seen from the following sequence, where the group G = Z/nZ :

0, 0, · · · , 0︸ ︷︷ ︸
n−1 times

, 1, 1, · · · , 1︸ ︷︷ ︸
r+1 times

.

As mentioned at the end of Remark 1.3 (of Chapter 1), Y. O. Hamidoune [48]

obtained the following generalization of Theorem 1.3, by studying subsequence sums

of different length (not necessarily of length |G|).

Theorem 3.1 (Hamidoune) Let S : (a1, a2, · · · , am) be a sequence of elements

from a finite abelian group G. Let l ∈ N and assume 1 ≤ l ≤ m ≤ 2l − 1. Then,

one of the following holds :

(i) The number of l-sums of S is at least m− l + 1.

(ii) There exists an i ∈ {1, 2, · · · ,m}, such that the element lai is an l-sum.

Note that by taking l = |G| and m = |G|+r in above theorem, we deduce Theorem

1.3 at once.

Now we state our two results from [26]. Recall that, for a positive integer n, the

notation [n] is used for the set {1, 2, · · · , n}. Also, ϕ(n) is the number of integers m,
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1 ≤ m ≤ n which are co-prime to n. Further, by Ω(n) (resp. ω(n)) we denote the

number of prime factors of n counted with multiplicity (resp. without multiplicity).

Theorem 3.2 Let p be any prime, α ≥ r ≥ 1 and A = (Z/pαZ)∗, the set of all

units modulo pα. Given a sequence X = {xi}p
α+r
i=1 of integers, let

S =

{∑
i∈I

wixi (mod pα) : I ⊆ [pα + r] with |I| = pα, wi ∈ A

}
.

If 0 /∈ S, then |S| ≥ pr+1 − pr.

Theorem 3.3 Let n be an odd integer, r ≥ 1 and A = (Z/nZ)∗. Given a sequence

X = {xi}n+r
i=1 of integers, let

S =

{∑
i∈I

wixi (mod n) : I ⊆ [n+ r] with |I| = n, wi ∈ A

}
and 0 /∈ S. Then, there exist primes p1, p2, . . . , pr+1 such that

|S| ≥ ϕ(p1)ϕ(p2) · · ·ϕ(pr+1) with p1p2 · · · pr+1|n.

Proofs of the above results will be given in the subsequent sections. We make

few remarks before proceeding.

Remark 3.4. As will be observed in Remarks 3.6 and 3.7, when n is a positive

odd integer or a prime power, the results of Luca [53] and Griffiths [42] follows from

Theorems 3.2 and 3.3. More precisely, given a sequence of integers X = {x1, x2, . . . ,

xn+Ω(n)}, we have 0 ∈ S. However, it should be noted that the most difficult part

of the results of Luca and Griffiths, is the case when n is even; it will be interesting

to extend our results to cover this case as well.

Remark 3.5. Let A be as stated in either of the theorems above. It was shown in

[6], by considering the sequence,

1, p1, p1p2, · · · , p1p2 . . . pΩ(n)−1,
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where n = p1p2 . . . pΩ(n) is the prime factorization of n, that DA(n) ≥ Ω(n) + 1, for

any n.

In particular, when n is a prime power or an odd integer, from above theorems

we get EA(n) ≤ n + Ω(n). Hence using lower bound from equation (3.2), we get

that

n+ Ω(n) ≤ n+DA(n)− 1

≤ EA(n)

≤ n+ Ω(n).

Therefore, we have

EA(n) = n+DA(n)− 1 = n+ Ω(n), (3.3)

and hence DA(n) = Ω(n) + 1. (3.4)

Thus the most important part of our Theorems 3.2 and 3.3 is in the situation

where the sequence X has length t with n + 1 ≤ t < n + Ω(n) and the condition

0 /∈ S implies a lower bound of |S|.

3.4 Relation between EA(G) and DA(G)

The results in the special cases observed in several papers, [6], [53], [42], [12], [68],

lead (see [5], [12]) to the expectation that a weighted form of Gao’s result (3.1) may

holds. That is for any subset A of {1, 2, · · ·n}, A 6= ∅ and for a finite abelian group

G of order n, following relation was conjectured :

EA(G) = |G|+DA(G)− 1 (3.5)
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Much of the work of [5], [12], [9], [72], [68] and [69] was motivated by or devoted

to establishing the relation (3.5). When n = p, a prime, the method employed

in [12] while determining the value of EA(p) in the case A = {1, 2, · · · , r}, for

1 < r < p, gives the relation (3.5), for any non-empty subset A ⊂ {1, 2, · · · , p− 1}

and G = Z/pZ. Another proof of this case was recently given in [11] by using the

theory of permanents. Of particular note is the very recent result of Yuan and Zeng

[72], establishing the relation (3.5) for the cyclic case.

For a general finite abelian group G, the following conditional result was proved

by Adhikari and Chen [5].

Theorem 3.4 (Adhikari and Chen) Let G be a finite abelian group of order n,

and A = {a1, a2, · · · , ar} be a finite subset of Z with |A| = r ≥ 2 and

gcd(a2 − a1, a3 − a1, · · · , ar − a1, n) = 1.

Then, we have EA(G) = n+DA(G)− 1.

We note that the above result does not include the result (3.1) of Gao which

corresponds to the case |A| = 1.

Recently, Grynkiewicz, Marchan and Ordaz [45] proved the result (3.5) uncon-

ditionally for an arbitrary finite abelian group G.

3.5 Some Lemmas

For the proof of Theorems 3.2 and 3.3 we will need two lemmas.

The following lemma from [53] will be used often.

Lemma 3.1 Let X = {x1, x2, . . . , xm} be a sequence of integers of length m. For

a prime p, we write, Xp = {i ∈ [m] : xi 6≡ 0 (mod p)}.
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i) Assume that n is odd and that |Xp| ≥ 2 for all primes p|n. Then for all

integers a, the equation ∑
i∈[m]

wixi ≡ a (mod n)

admits a solution w1, w2, . . . , wm ∈ (Z/nZ)∗.

ii) Assume that n is even, that |Xp| ≥ 2 for all p|n, and that further |X2| is even.

Then, for all even integers a, the equation∑
i∈[m]

wixi ≡ a (mod n)

admits a solution w1, w2, . . . , wm ∈ (Z/nZ)∗.

Using Lemma 3.1, we prove the following :

Lemma 3.2 Let p be any prime. Given a sequence {xi}p
α+r
i=1 , α ≥ r ≥ 1 of in-

tegers such that pα−r|xi, for each i, there exists I ⊆ [pα + r], |I| = pα such that∑
i∈I wixi ≡ 0 (mod pα), for some wi ∈ (Z/pαZ)∗.

Proof of Lemma 3.2. We distinguish two cases.

Case 1. p is an odd prime.

We proceed by induction on r. Take r = 1. If there are two indices i and j

(i 6= j) such that
xi
pα−1

,
xj
pα−1

6≡ 0 (mod p), (3.6)

then without loss of generality let us assume that i = 1, j = 2. By Lemma 3.1,

there exist a1, a2 ∈ (Z/pαZ)∗ such that

a1
x1

pα−1
+ a2

x2

pα−1
≡

pα∑
i=3

xi
pα−1

(mod p).
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Hence a1x1 + a2x2 − x3 − · · · − xpα ≡ 0 (mod pα).

On the other hand, if there are no two indices i and j such that (3.6) holds,

then without loss of generality,

x1

pα−1
≡ x2

pα−1
≡ · · · ≡ xpα

pα−1
≡ 0 (mod p),

and hence x1 + x2 + · · ·+ xpα ≡ 0 (mod pα) and we are through.

Now, let r ≥ 2 and assume the induction hypothesis. If there exist i 6= j such

that
xi
pα−r

,
xj
pα−r

6≡ 0 (mod p), (3.7)

then as before assuming i = 1, j = 2, by Lemma 3.1, there exist a1, a2 ∈

(Z/pαZ)∗ such that

a1
x1

pα−r
+ a2

x2

pα−r
≡

pα∑
i=3

xi
pα−r

(mod pr).

Hence a1x1 + a2x2 − x3 − · · · − xpα ≡ 0 (mod pα).

As before, if there are no two indices i and j such that (3.7) holds, then without

loss of generality,

x1

pα−r
≡ x2

pα−r
≡ · · · ≡ xpα+r−1

pα−r
≡ 0 (mod p),

and hence pα−(r−1)|xi for each i ∈ [pα+(r−1)] and we are through by the induction

hypothesis.

Case 2. p = 2.

We still proceed by induction on r. Take r = 1. If there are two indices i and j

such that
xi

2α−1
6≡ xj

2α−1
(mod 2), (3.8)

then without loss of generality let us assume that i = 1, j = 2 and further
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x1

2α−1
≡ 0 (mod 2),

x2

2α−1
≡ 1 (mod 2).

Now,

2α+1∑
i=3

xi
2α−1

≡ 0 (mod 2) =⇒ x1 + x3 + x4 · · ·+ x2α+1 ≡ 0 (mod 2α)

and

2α+1∑
i=3

xi
2α−1

≡ 1 (mod 2) =⇒ x2 + x3 + x4 · · ·+ x2α+1 ≡ 0 (mod 2α),

and we are through.

If there are no two indices i and j such that (3.8) holds, then

x1

2α−1
≡ x2

2α−1
≡ · · · ≡ x2α+1

2α−1
(mod 2),

and hence x1 + x2 + · · ·+ x2α ≡ 0 (mod 2α).

Now, let r ≥ 2 and we assume the induction hypothesis.

If there are not more than one i ∈ [pα + r] such that xi/2
α−r ≡ 1 (mod 2), then

without loss of generality let us assume that

x1

2α−r
≡ x2

2α−r
≡ · · · ≡ x2α+r−1

2α−r
≡ 0 (mod 2),

which would imply that 2α−(r−1)|xi, for each i ∈ [2α + (r − 1)] and we are through

by the induction hypothesis.

If there are more than one i ∈ [pα + r] such that xi/2
α−r ≡ 1 (mod 2), then it

is easy to observe that we can choose I ⊆ [2α + r], |I| = 2α such that∣∣∣{i ∈ I :
xi

2α−r
≡ 1 (mod 2)

}∣∣∣
is even and at least two, and therefore by part (ii) of Lemma 1, for some ai ∈

(Z/2rZ)∗, we have
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∑
i∈I

ai
xi

2α−r
≡ 0 (mod 2r),

and hence ∑
i∈I

aixi ≡ 0 (mod 2α),

where ai ∈ (Z/2αZ)∗.

This proves the lemma. 2

3.6 Proofs of Theorems 3.2 and 3.3

Proof of Theorem 3.2. Assume that 0 /∈ S. Let αi be integers such that pαi ||xi,

(i.e. pαi is the largest power of p, that divides xi) for i ∈ [pα + r] and without loss

of generality we can assume that

α1 = min{αi : i ∈ [pα + r]}.

If α1 ≥ α− r then we have pα−r|xi for each i and therefore Lemma 3.2 contradicts

the assumption that 0 /∈ S.

Therefore we must have α1 ≤ α− (r + 1). Consider the following subset of S,

S ′ = {ax1 + x2 + · · ·+ xpα : a ∈ (Z/pα−α1Z)∗}.

Observe that, for a, b ∈ (Z/pα−α1Z)∗,

ax1 ≡ bx1 (mod pα) ⇒ a
x1

pα1
≡ b

x1

pα1
(mod pα−α1)

⇒ a ≡ b (mod pα−α1).
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Thus,

|S| ≥ |S ′|

≥ ϕ(pα−α1) ≥ ϕ(pr+1)

= pr+1 − pr.

Hence the theorem. 2.

Remark 3.6. We observe that if the length of X is pα+α−1 ≥ pα+1, then 0 /∈ S

would imply that |S| is large; more precisely, we have |S| ≥ ϕ(pα) = pα − pα−1.

Taking r = α, in Lemma 3.2 (and of course, in the above theorem) the results

of Luca and Griffiths follows in the particular case when n is a prime power.

Proof of Theorem 3.3. Let

d = gcd(x1, x2, . . . , xn+r, n).

Write yi = xi/d for all i ∈ [n+ r] and consider the sequence

Y = {y1, . . . , yn+r}. We observe that

gcd(y1, y2, . . . , yn+r, n/d) = 1. (3.9)

Now, we proceed to prove our theorem by induction on r. Let r = 1.

If |Yp| ≥ 2 for all primes p dividing n/d, then since 2ω(n/d) ≤ n/d ≤ n, we can

find a subsequence T of length n of Y such that |Tp| ≥ 2 for all primes p dividing

n/d and by Part (i) of Lemma 3.1,∑
i∈I

wiyi ≡ 0 (mod n/d),

for some I ⊆ [n+ r] with |I| = n, wi ∈ A, which is a contradiction to the fact that

0 /∈ S.
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Therefore, there exists a prime p1 dividing n/d, such that |Yp1| ≤ 1. By (3.9), we

have |Yp1| = 1.

Without loss of generality we assume that yn+r 6≡ 0 (mod p1) and yi ≡ 0

(mod p1) for each i ∈ [n+ r − 1].

If y1 ≡ y2 ≡ · · · ≡ yn ≡ 0 (mod n/d) then 0 ∈ S. Thus, without loss of gen-

erality, there exists a prime p2, such that pt2| np1d , y1 6≡ 0 (mod p1p
t
2) and y1 ≡ 0

(mod p1p
t−1
2 ).

Consider the following subset of S:

S ′ = {ax1 + bxn+r + x2 + x3 · · ·+ xn−1 : a ∈ A′, b ∈ B′},

where A′ and B′ are subsets of (Z/nZ)∗ which are respectively the lifts of (Z/p2Z)∗

and (Z/p1Z)∗ in (Z/nZ).

Now we observe that, if a1x1 + b1xn+r ≡ a2x1 + b2xn+r (mod n), then (b2 −

b1)yn+r ≡ 0 (mod p1) and hence b1 = b2. Therefore, (a1 − a2)y1 ≡ 0 (mod n/d)

which implies that (a1 − a2)y1 ≡ 0 (mod p1p
t
2) so that (a1 − a2)(y1/p

t−1
2 p1) ≡ 0

(mod p2) and hence a1 = a2.

Thus,

|S| ≥ |S ′|

≥ |A′||B′|

= ϕ(p1)ϕ(p2),

where p1p2|n.

Now, let r ≥ 2 and assume the induction hypothesis.

As before, there exists a prime p1|(n/d) such that |Yp1 | = 1. Without loss of

generality we can assume that yn+r 6≡ 0 (mod p1) and yi ≡ 0 (mod p1) for each

i ∈ [n+ r − 1].
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Consider the sequence {yi/p1}n+r−1
1 . Write n′ = n/(p1d).

We claim that for some I ⊆ [n+ r − 1], with |I| = n′ + r − 1, we have

0 /∈

{∑
i∈J

wiyi/p1 (mod n′) : J ⊆ I, |J | = n′ and wi ∈ (Z/n′Z)
∗

}
.

For, otherwise we get disjoint subsets I1, I2, . . . , Ip1d of [n+ r− 1], with |Ij| = n′

such that for each j, we have∑
i∈Ij

wijyi/p1 ≡ 0 (mod n′),

for some wij ∈ (Z/n′Z)∗. Now, by lifting each wij in A (and using the same notation

wij for the lift) we get,

p1d∑
j=1

(∑
i∈Ij

wijxi

)
≡ 0 (mod n).

Thus, 0 ∈ S, a contradiction. Hence the claim is established.

Without loss of generality, let I = [n′ + r − 1]. By induction hypothesis there

exist primes p2, p3, . . . pr+1 such that∣∣∣∣∣
{∑

i∈J

wiyi/p1 (mod n′) : J ⊆ I, |J | = n′ and wi ∈ (Z/n′Z)
∗

}∣∣∣∣∣
is at least ϕ(p2)ϕ(p3) · · ·ϕ(pr+1) and p2p3 · · · pr+1|n′.

Therefore, by lifting each wi in A and considering the set

S ′ :=

{∑
i∈J

wixi (mod n) : J ⊆ I, |J | = n′ and wi ∈ A

}
,

we have

l = |S ′| ≥ ϕ(p2)ϕ(p3) · · ·ϕ(pr+1).

Let

S ′ = {t1, t2, . . . , tl}.
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Note that, ti ≡ 0 (mod p1) for each i.

Now consider the set T ′ = {axn+r + ti : i ∈ [l], a ∈ B′} (recall that B′ is the lift

of (Z/p1Z)∗ in Z/nZ). We observe that, if axn+r + ti ≡ bxn+r + tj (mod n), then

(a − b)yn+r ≡ 0 (mod p1) and hence a = b. Therefore, ti ≡ tj (mod n) and hence

ti = tj.

Thus |T ′| ≥ |B′|l ≥ ϕ(p1)ϕ(p2) · · ·ϕ(pr+1), with p1p2 · · · pr+1|n.

Since n + r − ((n′ + r − 1) + 1) = n − n′, by considering distinct indices

i1, i2, . . . , in−n′−1 ∈ [n+ r] \ (I ∪ {n+ r}) we get

T ′ + xi1 + xi2 + · · ·+ xin−n′−1
⊆ S.

Hence |S| ≥ ϕ(p1)ϕ(p2) · · ·ϕ(pr+1), with p1p2 · · · pr+1|n.

This completes the proof. 2.

Remark 3.7. When length of X is n + Ω(n) − 1, and n = p1 . . . pr, then 0 /∈ S

would imply that |S| ≥ (p1 − 1) . . . (pr − 1). If X is of length n + Ω(n), then a

contradiction would imply that 0 ∈ S. Thus, the results of Luca and Griffiths

follows in the particular case when n is an odd integer.
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Weighted Subsequence Sums II

4.1 Introduction

We defined the generalized Davenport constant DA(G) and the generalized EGZ

constant EA(G), in Section 3.2 of the previous chapter. We also asked the following

question for the cyclic group Z/nZ (see Section 3.3 of Chapter 3):

Given a sequence S of elements of G, if S does not have an A-weighted zero-sum

subsequence of length |G|, what can be said about the number of distinct |G|-length

A-weighted subsequence sums ?

In Chapter 3, we answered this question by giving a lower bound on the number

of |G|-sums, in particular case when G is cyclic group of order n (a prime power or

an odd integer) and the set A = (Z/nZ)∗. In the present chapter we take up the

problem with the set A = {1,−1} and a general abelian group G of finite order.

We present our work from [7], which in particular gave an alternate proof of the

main result of [6] (for more details refer to Remark 4.4).

More precisely, we have proved the following theorem (for some terminology in

the statement of the theorem, one may look into Section 4.3) :
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Theorem 4.1 Let G be a finite abelian group of order n and let it be of the form

G ∼= Z/n1Z⊕Z/n2Z⊕· · ·⊕Z/nrZ, where 1 < n1|n2| · · · |nr. Let A = {1,−1} and k

be a natural number satisfying k ≥ 2r
′−1− 1 + r′

2
, where r′ = |{i ∈ [r] : ni is even}|.

Then, given a sequence S = (x1, x2, · · · , xn+k), with xi ∈ G, if S has no A-weighted

zero-sum subsequence of length n, then there are at least 2k+1−δ distinct A-weighted

n-sums, where

δ =

1 if 2 | n

0 otherwise.

For a finite abelian group G of order n, Gao and Leader [38] obtained some

result on the description of some sequences which do not have 0 as an n-sum and

at which the minimum number of n-sums is attained.

4.2 Relating sums to |G|-sums

Given an abelian group G of order k and a sequence S of elements of G. Family

of k-sums of a sequence S has been studied by several authors. We give a brief

account of results related to sums and k-sums of a sequence of elements of G.

As can be seen from the result (3.1) of Gao [34], the study of k-sums is closely

related to the study of subsequence sums. J. E. Olson [61] gave a sufficient condition

for the family of k-sums from a sequence S of length 2k−1 to be the entire group G.

This result was extended by W. Gao [35] to deal with sequences of general length.

Hamidoune, Ordaz and Ortuño [49] gave a sufficient condition for 0 to be an

k-sum from a sequence S : a1, a2, · · · , ar, in terms of the number of ai that are

allowed to assume the same value.

Bollobás and Leader [20] conjectured the following extension of their result (The-

orem 1.3) and the result of Gao [34] (the relation (3.1)).
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Conjecture 4.1. The minimum number of k-sums for a sequence S : a1, · · · , ak+r

of elements from G that does not have 0 as a k-sum is attained at the sequence

b1, b2, · · · , br+1, 0, 0, · · · , 0︸ ︷︷ ︸
k−1 times

where b1, b2, · · · , br+1 is chosen to minimize the number of sums (of length ≥ 1)

without 0 being a sum.

Remark 4.1. The problem of minimizing the number of sums without 0 being a

sum, can easily be seen solved as follows :

If b1, b2, · · · , br+1 is a sequence that does not have 0 as a sum (of any length ≥

1) then it has at least r + 1 distinct sums :

b1, b1 + b2, · · · , b1 + b2 + · · ·+ br+1.

Moreover, this is best possible as can be seen by considering the sequence

1, 1, · · · , 1︸ ︷︷ ︸
r+1 times

,

of elements from Z/kZ (here r + 1 ≤ k − 1).

Gao and Leader confirmed the above conjecture in [38].

Bialostocki and Dierker [19] generalized the EGZ theorem by studying sequences

of length 2k − 2 and characterizing those without zero-sum subsequences of length

k. They proved that such a sequence can only occur when G is cyclic and the

sequence contains exactly two group elements, each occurring exactly k − 1 times.

Exploiting a distinctness assumption, Grynkiewicz [44] obtained a result that gen-

eralizes the above mentioned result of Bialostocki and Dierker [19], and also solved

a conjecture of Hamidoune [48], and extended some results of Hamidoune [48], and

of Hamidoune, Ordaz and Ortuño [49].
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4.3 Notations and Preliminaries

Let G be a finite abelian group of order n, written additively and let A be a non-

empty subset of {1, 2, · · · , n−1} . Given a sequence S : (s1, s2, · · · , sr) of elements of

G and ā = (a1, a2, · · · , ar) ∈ Ar, we define σ(S) =
∑r

i=1 si and σā(S) =
∑r

i=1 aisi.

If σ(S) = 0 (resp. σā(S) = 0 for some ā ∈ Ar), we say that S is a zero-sum (resp.

an A-weighted zero-sum) sequence.

For x ∈ G, Ax will denote the following subset of the group G,

Ax := {ax : a ∈ A}.

If H is a subgroup of G, then φH : G→ G/H will denote the natural homomorphism

and given a sequence S : (s1, s2, · · · , sr) of elements of G, φH(S) will denote the

sequence (φH(s1), φH(s2), · · · , φH(sr)) with elements in G/H.

The length of a sequence S will be denoted by |S|; we think that this will not

have any confusion with the usual notation |G| used to denote the order of a finite

group G.

For a subsequence S ′ of a sequence S, we use S \ S ′ to denote the sequence

obtained by removing the elements of the subsequence S ′ from S.

Generalizing a definition in [71], we call a sequence S with elements in G an

A-weighted zero-smooth sequence if for any 1 ≤ l ≤ |S|, there exists an A-weighted

zero-smooth subsequence of S with length l. When A = {1}, S is simply called a

zero-smooth sequence.

Remark 4.2. If S is a zero-smooth sequence then it is also an A-weighted zero-

smooth sequence. This is obvious, as A 6= ∅.

Remark 4.3. We observe that if U = (u1, u2, · · · , ur) and V = (v1, v2, · · · , vs)

are sequences of elements of G such that U is an A-weighted zero-smooth sequence
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and V is an A-weighted zero-sum sequence with |V | ≤ |U | + 1, then the sequence

(u1, u2, · · · , ur, v1, v2, · · · , vs), obtained by appending V to U , is an A-weighted

zero-smooth sequence.

We shall need the following result of Yuan and Zeng [71] on the existence of

zero-smooth subsequence.

Theorem 4.2 (Yuan, Zeng) Let G be an abelian group of order n. Let S be a

sequence with elements in G such that |S| ≥ n + D(G) − 1 and the element 0 is

repeated maximum number of times in S. Then there exists a subsequence S1 of S

which is zero-smooth and |S1| ≥ |S| −D(G) + 1.

M. Kneser [52] (one may also see [56] or [67]) generalized the Cauchy-Davenport

Theorem (Theorem 1.2) as follows :

Theorem 4.3 (Kneser) Let G be an abelian group, and let A and B be finite,

non-empty subsets of G. Let H = Stab(A+B). Then

|A+B| ≥ |A+H|+ |B +H| − |H|.

We also need a very useful generalization of the above theorem due to DeVos,

Goddyn and Mohar [29].

Let A = (A1, A2, · · · , Ar), where r ≥ n = |G|, be a sequence of finite non-empty

subsets of G. Let
∑

n(A) denotes the set of all group elements representable as a

sum of n elements from distinct terms of A. i.e. we have

∑
n

(A) = {ai1 + ai2 + · · ·+ ain : 1 ≤ i1 < i2 < · · · < in ≤ r}.

Further, let H = Stab(
∑

n(A)) := {g ∈ G : g +
∑

n(A) =
∑

n(A)}.

The theorem of DeVos, Goddyn and Mohar [29] is the following.
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Theorem 4.4 (DeVos, Goddyn and Mohar) With the notations as above, we

have

∣∣∣∣∑
n

(A)

∣∣∣∣ ≥ |H|
1− n+

∑
g∈G/H

min{n, |{j : g ∩ Aj 6= ∅}|}

 .

4.4 Proof of Theorem 4.1

In the case r′ = 0, it is possible to have k = 0. We observe that in this case, |S| = n

and if σ(S) = t 6= 0, then −σ(S) = −t 6= 0. Again, n being odd, G does not have

any element of order 2 and thus there are at least two distinct A-weighted n-sums,

viz. t and −t. So, the result is true in this case and we may assume that k ≥ 1.

If possible, we suppose that the result is not true and choose a counter example

(G,S, k) with |G| = n minimal.

Considering the sequence A = (A1, A2, · · · , An+k), where Ai = Axi for each i,

1 ≤ i ≤ n+ k, we have,

0 6∈
∑
n

(A), (4.1)

and

∣∣∣∣∑
n

(A)

∣∣∣∣ < 2k+1 − δ. (4.2)

Let L = Stab(
∑

n(A)). We claim that L = 〈0〉.

If possible, let L 6= 〈0〉, so that |G/L| < n. Writting the identity element

of G/L as 0, if for every subsequence S ′ = {xi1 , xi2 , · · · , xid} of S of length d =

|G/L| + k, 0 is representable as a sum of |G/L| elements from distinct terms of
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the sequence (φL(Axi1), φL(Axi2), · · · , φL(Axid)), then we get pairwise disjoint sub-

sequences S1, S2, · · · , S|L|, each of length |G/L| and ā1, ā2, · · · , ā|L| ∈ A|G/L| such

that

σāi(φL(Si)) = 0,

for each i, 1 ≤ i ≤ |L|.

Therefore, we have

|L|∑
i=1

σāi(φL(Si)) = 0

⇒ φL

 |L|∑
i=1

σāi(Si)

 = 0.

Writting θ = σā1(S1) + σā2(S2) + · · · + σā|L|(S|L|), as θ ∈ L = Stab(
∑

n(A)) we

also have −θ ∈ L. Since θ ∈
∑

n(A), we get 0 = −θ+ θ ∈
∑

n(A), contradicting to

(4.1).

Hence there exists a subsequence S ′ of S with length |G/L| + k (observe that

a permissible value of k for G is obviously a permissible for G/L) such that 0 /∈∑
|G/L|(φL(A′)), where A′ is the subsequence of A corresponding to the sequence

S ′. Hence by minimality of |G|, letting

δ′ =

1 if 2||G/L|,

0 otherwise

we have, ∣∣∣∣∣ ∑
|G/L|

(φL(A′))

∣∣∣∣∣ ≥ 2k+1 − δ′

≥ 2k+1 − δ.
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And hence, ∣∣∣∣∣ ∑
|G/L|

(A′)

∣∣∣∣∣ ≥ 2k+1 − δ.

Since the length of the subsequence A \A′ is n+ k − (|G/L|+ k) = n− |G/L|,

we have ∣∣∣∣∑
n

(A)

∣∣∣∣ ≥ ∣∣∣∣ ∑
|G/L|

(A′)
∣∣∣∣

≥ 2k+1 − δ,

a contradiction to (4.2).

Therefore we have the claim, L = 〈0〉. Hence by Theorem 4.4 of DeVos Goddyn

and Mohar, we have

∣∣∣∣∑
n

(A)

∣∣∣∣ ≥ 1− n+
∑
x∈G

min{n, |{i : 1 ≤ i ≤ n+ k, x ∈ Ai}|}.

Since (4.1) implies, in particular that no element of G can be in n distinct Ai’s, we

have

∣∣∣∣∑
n

(A)

∣∣∣∣ ≥ 1− n+
∑
x∈G

min{n, |{i : 1 ≤ i ≤ n+ k, x ∈ Ai}|}

= 1− n+
∑
x∈G

|{i : 1 ≤ i ≤ n+ k, x ∈ Ai}|

= 1− n+
n+k∑
i=1

|Ai|.

Writting t = |{j : 1 ≤ j ≤ n + k, |Aj| = 1}|, from (4.1) and the above inequality

we have,

n− 1 ≥
∣∣∣∣∑

n

(A)

∣∣∣∣ ≥ 1− n+ 2(n+ k − t) + t,
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and hence

t ≥ 2(k + 1).

Rearranging, if needed, we assume that (x1, x2, · · · , xt) is the subsequence of S

such that |Ai| = |Axi| = 1 for each i, 1 ≤ i ≤ t and the element x1 is repeated

maximum number of times in the subsequence (x1, x2, · · · , xt).

We observe that all the xi’s appearing in (x1, x2, · · · , xt) are either equal to the

zero element of the group or those of order 2, when n is even.

Consider the sequence S ′ = (y1, y2, · · · , yn+k), where yi = xi − x1, for each

i, 1 ≤ i ≤ n+ k. Write B = (B1, B2, · · · , Bn+k), where Bi = Ayi = A(xi − x1), for

each i, 1 ≤ i ≤ n+ k.

Observing that |Ax1| = 1, if we consider a typical element

εi1yi1 + εi2yi2 + · · ·+ εinyin ,

of
∑

n(B), where εj ∈ {1,−1}, then it can be written as:

εi1(xi1 − x1) + εi2(xi2 − x1) + · · ·+ εin(xin − x1)

= εi1xi1 + εi2xi2 + · · ·+ εinxin ,

as
∑n

j=1 εijx1 = nx1 = 0.

Hence,
∑

n(A) =
∑

n(B) and from (4.1) and (4.2), we have

0 6∈
∑
n

(B) (4.3)

and

∣∣∣∣∑
n

(B)

∣∣∣∣ < 2k+1 − δ. (4.4)

By our construction, in the subsequence S1 = (y1, y2, · · · , yt) of S ′, all the elements

yi, 1 ≤ i ≤ t, satisfy 2yi = 0 and the element y1 = 0 is repeated maximum number

of times in S1.
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Depending on the parity of n, we consider the following two cases :

Case I (n is odd). We observe that in this case, yi = 0 for all i, 1 ≤ i ≤ t.

Now, we choose a maximal A-weighted zero-sum subsequence S2 of S ′ \S1, (we use

S ′\S1 to denote the sequence obtained by removing the elements of the subsequence

S1 from S ′), possibly empty. If |(S ′ \ S1) \ S2| ≤ k, then

(n+ k)− |S1| − |S2| ≤ k ⇒ n− |S2| ≤ |S1|.

And hence by appending a subsequence of (zeros) S1 of length n−|S2| to S2 we get

an A-weighted zero-sum subsequence of S ′ of length n, which is a contradiction to

(4.3).

Thus there exists a subsequence S3 = (yj1 , yj2 , · · · , yjk+1
) of (S ′ \ S1) \ S2 which

does not have any non-empty A-weighted zero-sum subsequence, by maximality of

S2.

Consider the set,

X =

{
k+1∑
i=1

εiyji : εi ∈ A = {1,−1}

}
.

If for εi, ε
′
i ∈ A = {1,−1}, we have

k+1∑
i=1

εiyji =
k+1∑
i=1

ε′iyji ,

then writing I = {i : εi 6= ε′i}, we get,

2
∑
i∈I

γiyji = 0

⇒
∑
i∈I

γiyji = 0, (since n is odd)

where γi = εi − ε′i ∈ A, for each i ∈ I. This leads to a contradiction (by appending

the sequence (yji : i ∈ I) to S2) to the maximality of S2, if I is non-empty.
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Thus, we have |X| ≥ 2k+1 and considering the sum of a fixed subsequence of

S ′ \ S3 of length n − (k + 1), and adding that to various sums in X, we have

|
∑

n(B)| ≥ 2k+1 which is a contradiction to (4.4).

Case II (n is even). Put H = 〈y1, y2, · · · , yt〉. As we have already observed,

2yi = 0, for all i, 1 ≤ i ≤ t. Hence H is a subgroup of Zr′
2 .

Thus,

|H| ≤ 2r
′

(4.5)

and by a result of Olson [58] on the Davenport constant of p-groups,

D(H) ≤ D(Zr′

2 ) = r′ + 1. (4.6)

Since, by our assumption, k ≥ 2r
′−1 − 1 + r′

2
, by (4.5) we have,

|S1| = t ≥ 2(k + 1) ≥ 2r
′
+ r′ ≥ |H|+D(H)− 1.

Also, 0 is repeated maximum number of times in S1.

So, we can apply Theorem 4.2 of Yuan and Zeng, and it follows that S1 has a

zero-smooth subsequence T1 such that |T1| ≥ |S1| −D(H) + 1. Therefore, from the

fact |S1| = t ≥ 2(k + 1) and (4.6) we have

|T1| ≥ 2k + 2− r′.

Again, since k ≥ 2r
′−1 − 1 + r′

2
, we have k − r′ ≥ 2r

′−1 − 1− r′

2
≥ −1, and thus

|T1| ≥ 2k + 2− r′

= k + 2 + k − r′

≥ k + 1.

Now, we choose a maximal A-weighted zero-smooth subsequence T of S ′. We have,

|T | ≥ |T1| ≥ k + 1. Further, (4.3) implies that |T | < n. Say |T | = n− l, l ≥ 1.
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Consider the subsequence S ′ \ T = (ys1 , ys2 , · · · , ysk+l), and the set

Y =

{∑
i∈I

ysi : I ⊂ {1, 2, · · · , k + 1}, I 6= ∅

}
.

Now, if for I 6= J, I 6= ∅, J 6= ∅, we have∑
i∈I

ysi =
∑
i∈J

ysi ,

then we shall have

∑
i∈I′

δiysi = 0, δi ∈ A,

where I ′ = (I ∪ J) \ (I ∩ J).

Since it is clear that I ′ is non-empty, and that 1 ≤ |I ′| ≤ k + 1 ≤ |T |; from

the observations made in Remarks 4.2 and 4.3 of Section 4.3, by appending the

subsequence corresponding to I ′ to T , we get a contradiction to the maximality of

T . Therefore we have |Y | = 2k+1 − 1. Adding ysk+2
+ ysk+3

+ · · · + ysk+l to each of

the distinct sums in Y , we get 2k+1 − 1 distinct sums :

ysk+2
+ ysk+3

+ · · ·+ ysk+l +
∑
i∈I

ysi ,

I ⊂ {1, 2, · · · , k + 1}, I 6= ∅.

Now, for a given I ⊂ {1, 2, · · · , k+ 1}, I 6= ∅, as n− (|I|+ l− 1) ≤ n− l = |T |,

we can append an n− (|I|+ l− 1) length A-weighted zero-sum subsequence of T to

ysk+2
+ ysk+3

+ · · ·+ ysk+l +
∑
i∈I

ysi

to make an A-weighted n-sum without changing the value of the sum.

Thus, |
∑

n(B)| ≥ 2k+1 − 1, which contradicts to (4.4).

Hence the theorem. 2.
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Remark 4.4. It is not difficult to observe that for a finite abelian group G with

G ∼= Z/n1Z⊕Z/n2Z⊕· · ·⊕Z/nrZ, 1 < n1|n2| · · · |nr, satisfying |G| > 2(2r
′−1−1+ r′

2
),

where r′ = |{i ∈ {1, 2, · · · , r} : 2|ni}|, and A = {1,−1}, our result (Theorem 4.1)

along with some counter examples like those given in [6] (see also [10]), yields

|G|+
r∑
i=1

blog2 nic ≤ EA(G) ≤ |G|+ blog2 |G|c. (4.7)

This gives the exact value of EA(G) when G is cyclic (thus giving another proof of

the main result in [6]) and unconditional bounds in many cases.

However, we mention that when A = {1,−1}, finding the corresponding bounds

for DA(G) for a finite abelian group G and the exact value of DA(G), when G is

cyclic, is not so difficult (see [6], [10]). Therefore, from the relation

EA(G) = |G|+DA(G)− 1,

for an abelian group G and a non-empty subset A of [n−1], (which generalizes (3.1))

established recently for cyclic groups by Yuan and Zeng [72] and soon afterwards for

general finite abelian groups by Grynkiewicz, Marchan and Ordaz [45], the result

(4.7) follows.
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Ramsey numbers for stars and matchings, Discrete Math. 110 (1992), no. 1–3,

1–8.

[20] B. Bollobás and I. Leader, The number of k-sums modulo k, J. Number Theory,

78, no. 1, 27–35 (1999).
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