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Search for an Inflation Model in String Theory, with all moduli stabilized, is still on!

Recall Moduli Stabilzation of KKLT

Step-I: Starts with the assumption that, in a flux compactification of Type IIB on Calabi-
Yau threefold, all moduli are fixed except for one Kahler modulus ρ which survives the
compactification.

Leading to a constant superpotential W0 (GVW flux superpotential) and the Kahler
potential

K(ρ, ρ̄) = − 3 ln(ρ+ ρ̄)
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Step-II: The volume modulus is then fixed through a non-perturbative correction to
W0, of the form:

W (ρ) = W0 +A e−bρ

A is a constant, b is instanton charge for Euclidean D3- brane or 2π/n for a stack of n
D7-branes wrapping a four-cycle.

KKLT studied the potential:

VF = eK [GījDiW DjW − 3|W |2]

Minimization of the potential leads to moduli stabilization.

The minimum of the potential turns out to be -ve (AdS)
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Step-III: Uplifting:

Adding an anti-D3 brane to the system which sits at the tip of the throat. The warped
tension of the anti-D3 branes lifts the AdS minimum to a local metastable dS vacuum.

Brane-anti-brane Inflation :

KKLMMT proposal starts with the one-modulus model of KKLT. Brane dynamics is
added by including a mobile D3-brane which is drawn down the throat by it attraction
towards the anti-D3 brane.

A D3-brane added to a Type IIB vacuum backreacts on the metric and changes the
Kahler potential of the low energy four dimensional supergravity.
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KKLMMT considered the modifications to Kahler potential, which depends upon the
position, (zi), of the D3-brane:

K(ρ, ρ̄) = − 3 ln[ρ+ ρ̄−K(z, z̄)]

The non-perturbative potential was kept as in the KKLT model.

The potential V = Vf + VD, where VD includes the D3-brane interaction with anti-
D3-brane (in the warped geometry) was calculated taking K(z, z̄) ≡ K(φ, φ̄) = φφ̄. It
was assumed that such a potential has a dS minimum at some values of ρ and φ and
the mass of φ (D3-brane moduli/ inflaton) was computed in an expansion about this
minimum and it turned out that such a mass of the inflaton field lead to a slow-roll
parameter, in the inflation model,

η = 2/3,

Incompatible with sustained slow-roll inflation.
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Presence of D3-brane also modifies the non-perturbative superpotential Giddings
and Maharana, hep-th/0507158

Does it solve the η problem?

This correction, for the warped compactification, has been computed

Bauman, Dymarsky, Klebanov, Maldacena, Mc Allister and Murugan hep-th/0607050
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Result: W = W0 + Wnp

Wnp = A(zα) e−bρ

A(zα) depends upon the embedding of D7-branes wrapping the four-cycle and pre-
serving SUSY, specified by f(zα) = 0.

A(zα) = A0

(
f(zα)
f(0)

)1/n

Application to Brane Inflation: BDKMS Delicate Universe 0705.3837 (hep-th), BDKM
0706.0360 (hep-th)

Kuperstein embedding: f(z1) = µ− z1

K =
3
2

(
4∑
i=1

|zi|2
)2/3

=
3
2
r2

K(ρ, ρ̄, zα, z̄α) = − 3M2
pl ln[ρ+ ρ̄− γK]
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Taking z1 = −r3/2/
√

2, σ = Re (ρ) and canonical normalized field φ =
√

3T3/2r with
r3µ ≡ 2µ2 i.e. φ2

µ = 3/2T3(2µ2)2/3 leads to the full two-field potential:

V (φ, σ) =
b|A0|2

3M2
pl

e−2bσ

U2(φ, σ)
g2/n(φ)

{
2bσ + 6

− 6ebσ
|W0|
|A0|

1
g1/n(φ)

+
3
n

[
c
φ

φµ
−
(
φ

φµ

)3/2

−
(
φ

φµ

)3
]

1
g2(φ)

}
+

D(φ)
U2(φ, σ)

,

where

U(φ, σ) = 2σ − γ

T3
φ2 , g(φ) = 1 +

(
φ

φµ

)3/2

D(φ) = D0

(
1− 27D0

64π2φ4

)
, c = 1/(6πγT3φ

2
µ)

and D0 = 2h−1
0 T3 i.e. twice the warped tension at the tip.
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An effective single field potential: V (φ) ≡ V (σ∗(φ), φ) where ∂σV |σ∗(φ) = 0
(instantaneous minimum)

Assumes σ is more massive than φ and evolves adiabatically while remaining in its
instantaneous minimum

σ∗ ≈ σ0

[
1 + c3/2

(
φ

φµ

)3/2
]
.

σ0 related to γ and c3/2 is related to n and W0/A0 Numerical simulation does not
support the assumption for truely generic configuration of a D3-brane in a compact
space

Working with the approximated expression yields number of e-foldings to be less
than 10 even for highly finetuned parameters

σ is not even canonical scalar field but χ is

χ

Mpl
=

√
3
2

lnσ .

Best bet is to consider a two-field inflation with V (χ, φ)
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For flat FRW metric with scale factor a, Eqns of motion:

Ḣ = − 1
2M2

pl

(φ̇2 + χ̇2) ,

φ̈+ 3Hφ̇+ V,φ = 0 ,

χ̈+ 3Hχ̇+ V,χ = 0

and the constraint eqn:

3H2 =
1
M2

pl

[
1
2
φ̇2 +

1
2
χ̇2 + V (φ, χ)

]
Slow roll parameters:

εφ =
M2

pl

2

(
V,φ
V

)2

, εχ =
M2

pl

2

(
V,χ
V

)2

,

ηφφ = M2
pl

V,φφ
V

, ηχχ = M2
pl

V,χχ
V

, ηφχ = M2
pl

V,φχ
V

.
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Potential vs φ̄ for various fixed χ̄ for n = 8, A0 = 1, bσ0 = 10.1,W0 = 3.496×10−4, D0 =
1.215 × 10−8, φµ = 0.25 Solid curve is obtained by solving the background eqn nu-
merically for initial conditionφ/φµ = 0.8 and χ̄ ≡ χ/Mpl = 3.1385
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Potential vs χ̄ for fixed φ̄
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Solid curve is for Potential obtained by numerically solving the background eqns in
two-field model

Dotted curve is for V (φ, σ∗(φ))
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Acceptable value of Number of e-foldings in two-field model

This discripancy reflects that the background trajectory is not given by the fieldφ

but by the field ψ satisfying:

ψ̇ = (cos θ)φ̇+ (sin θ)χ̇ , tan θ = χ̇/φ̇ .

ṡ ≡ −(sin θ)φ̇+ (cos θ)χ̇ = 0

fields donot move to the direction orthogonal to ψ.

Correct single field description of inflation dynamics is in terms of ψ with mass
sqared:

V,ψψ = (cos2 θ)V,φφ + (sin 2θ)V,φχ + (sin2 θ)V,χχ .

V,ss = (sin2 θ)V,φφ − (sin 2θ)V,φχ + (cos2 θ)V,χχ.

Then the slow-roll parameter, ηψψ ≡M2
plV,ψψ/V , is

ηψψ = (cos2 θ)ηφφ + (sin 2θ)ηφχ + (sin2 θ)ηχχ .
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Period of inflation is given by |ηψψ| < 1 which is for 0.3 ≤ φ/φµ ≤ 0.5.
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ηφφ is larger than unity during this period

Possible to have larger number of e-foldings for D0 = 1.218 × 10−8 instead of D0 =
1.215× 10−8, increases to 148.

The field stays for longer time at the instantaneous minima
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If D0 = 1.210× 10−8, number of e-foldings decreases to 43

This shows how sensitive it is to model parameters and reflects severe fine tuning
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COSMOLOGICAL PERTURBATIONS

In two-field model, density perturbations are different from that of single-field model
due to presence of isocurvature (entropy) perturbations.

denote field perturbations in φ and χ as δφ and δχ and define, with earlier defn of θ

δψ ≡ (cos θ)δφ+ (sin θ)δχ ,

δs ≡ −(sin θ)δφ+ (cos θ)δχ

Perturb the spacetime around FRW and go through the standard analysis:
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Results

(1) Tensor to scalar ratio is found to be 10−5, consistent with observational bound< 0.3.

(2) The spectral index of scalar perturbation turns out to be nR ' 1 + 2ηψψ i.e deter-
mined by ηψψ instead of ηφφ, consistent with our observation that background trajec-
tory is along ψ direction.

(3) However, we found that when the spectrum approaches the scale scale invarint
value nR = 1, the amplitude PR tends to be larger than the COBE normalized value
(2.4× 10−9) by about three order of maginude.

Thus the correction to non-perturbative superpotential, found as yet, is not adequate!
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