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Abstract. Let m ≥ 2 be any integer and let β > 1 be a real algebraic integer such that all its Galois conjugates

are distinct from β and have absolute value less than or equal to 1 (in other words, β is a Pisot-Vijayaraghavan
number). Let a1, a2, . . . , am be distinct positive integers. In this article we prove that the following infinite sums

1,

∞∑
n=1

1

βa1n2 ,

∞∑
n=1

1

βa2n2 , . . . ,

∞∑
n=1

1

βamn2

are Q(β)-linearly independent. As a consequence, we prove the linear independence of special values of Jacobi-theta-

constants.

1. Introduction

For a complex number τ which lies in the upper complex half plane H := {τ ∈ C : Im(τ) > 0}, the Jacobi-theta-
constants (see for details [8], Chapter 10) are defined as

θ2(τ) = 2

∞∑
n=1

q(n+1/2)2 , θ3(τ) = 1 + 2

∞∑
n=1

qn
2

and θ4(τ) = 1 + 2

∞∑
n=1

(−1)nqn
2

where q = eiπτ . These constants θ2(τ), θ3(τ) and θ4(τ) are periodic function with period 2.

Elsner, Luca and Tachiya [4] proved that the values of the Jacobi-theta constants θ3(mτ) and θ3(nτ) are alge-
braically independent over Q for any distinct integers m and n, under some conditions on τ . On the other hand,
in 2018, Elsner and Tachiya [3] also proved that for any three distinct integers `, m and n, the constants θ3(`τ),
θ3(mτ) and θ3(nτ) are algebraically dependent over Q. These results motivate us to ask the following questions.

Question 1. Let m ≥ 2 be an integer and let a1, . . . , am be distinct positive integers. Let k ∈ {2, 3, 4} be a given
integer. Then, under what conditions on τ , the m-theta values

θk(a1τ), . . . , θk(amτ)

are linearly independent over Q with 1?

Question 2. Let m ≥ 2 be an integer and let a1, . . . , am be distinct positive integers. Let k 6= ` ∈ {2, 3, 4} be given
integers. Then under what conditions on τ , the set of m-theta values

{θk(aiτ), θ`(ajτ) : 1 ≤ i 6= j ≤ m}

is linearly independent over Q with 1?

In this direction, in 2019, the second author proved the following result.

Theorem 1.1. [[7], Theorem 1] Let m, b ≥ 2 be integers and 1 ≤ a1 < a2 < · · · < am be integers such that√
ai/aj /∈ Q for any i 6= j. Let τ0 =

i log b

π
. Then the numbers

1, θ3(a1τ0), θ3(a2τ0), . . . , θ3(amτ0)

are Q-linearly independent.

Recently, in 2020, C. Elsner and second author [5] proved that for distinct positive integers a1, . . . , am, the
functions θ3(a1τ), . . . , θ3(amτ) are linearly independent over C(τ) and they also studied Q-linear independence
results as values of these function in the case m = 3 and for certain class of τ . This latter result answered the above
Question 1 in the case m = 3, k = 3 and under some restriction on ai’s.
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The main result of this article is to strengthening Theorem 1.1. In particular, we remove the restrictive condition√
ai/aj /∈ Q on ai’s and we extend the result for an algebraic integer β instead of an integer b ≥ 2 in Theorem 1.1.

More precisely, we prove the following result.

Theorem 1.2. Let m ≥ 2 be any integer and f1, f2, . . . , fm : N → Z\{0} be functions of polynomial growth. Let
β > 1 be a real algebraic integer such that all its Galois conjugates are distinct from β and have absolute value less
than or equal to 1, and let a1, a2, . . . , am be distinct positive integers. Then the m infinite sums

1,

∞∑
n=1

f1(n)

βa1n2 ,

∞∑
n=1

f2(n)

βa2n2 , . . . ,

∞∑
n=1

fm(n)

βamn2 (1.1)

are Q(β)-linearly independent with 1.

The number β in Theorem 1.2 is called Pisot-Vijayaraghavan number or Pisot number. For example all the
positive integer greater than 1 are Pisot numbers. For any natural number d ≥ 1, there are algebraic integers
of degree d which are Pisot-Vijayaraghavan numbers. As an immediate consequence of Theorem 1.2, and by the
periodicity of θ3(τ) and θ4(τ), we have some interesting corollaries.

If we take fi(n) = 1 for i = 1, . . . ,m in Theorem 1.2, we have the first corollary as follows.

Corollary 1.1. Let β > 1 and ai’s be as in Theorem 1.2. Set τn = i log β
π + 2n. Then for every integer n ≥ 1, the

m-Jacobi theta values

θ3(a1τn), θ3(a2τn), . . . , θ3(amτn)

are Q(β)-linearly independent with 1.

First we note that in view of the result of Elsner, Luca and Tachiya, each of the Jacobi-theta values in Corollary
1.1 is transcendental. Also, note that if we take any two Jacobi-theta values in Corollary 1.1, then they are
algebraically independent over Q but not when we take 3 distinct values. Therefore, the result stated in Corollary
1.1 is effective, when we consider more than three Jacobi-theta values.

By taking fi(n) = (−1)n for all i = 1, . . . ,m in Theorem 1.2, we have the following corollary.

Corollary 1.2. Let β > 1, ai’s and τn be as in Corollary 1.1. Then for every integer n ≥ 1, the m-theta values

θ4(a1τn), θ4(a2τ), . . . , θ4(amτn)

are Q(β)-linearly independent with 1.

In [1], D. Bertand proved the following result; If τ ∈ H such that eiπτ is algebraic, then the values θ3(τ), θ4(τ) and
θ′3(τ) are algebraically independent over Q. By this result, we see that each values in Corollary 1.2 is transcendental.
In this case also assertion stated in Corollary 1.2 is effective when m ≥ 2.

If we take fi(n) = (−1)i+1 for i = 1, . . . ,m for an odd integer m in Theorem 1.2, we have the following corollary
involving both θ3(τ) and θ4(τ).

Corollary 1.3. Let β > 1, ai’s and τn be as in Corollary 1.1. Then for every integer n ≥ 1, the m-theta values

θ3(a1τn), θ4(a2τ), . . . , θ4(am1
τ), θ3(amτn)

are Q(β)-linearly independent with 1.

In the next corollary, we consider b-ary expansions with different bases and their Q-linearly independence.

Corollary 1.4. Let b ≥ 2 be integer and let (ci,n)n be a sequences of positive integers defined over the alphabet
{1, . . . , bi − 1} for i = 1, 2, . . . ,m. Then the following base expansions

∞∑
n=1

c1,n
bn2 ,

∞∑
n=1

c2,n
b2n2 , . . . ,

∞∑
n=1

cm,n
bmn2

are Q-linearly independent with 1.

The strategy of the proof of our main result is the following: First we prove the existence of infinitely many

positive integers N such that the fractional part of
(
a1
ai

) 1
2

N lies in some fixed sub-interval of [0, 1) for i = 1, . . . ,m
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(which comes from Section 2). Set N1 = N and Ni =

[(
a1
ai

) 1
2

N

]
for all i = 2, . . . ,m. Suppose the assertion in

Theorem 1.2 is not true. Then by these choices of Ni’s, we get

−βa1N
2
1

[
c0 +

N1∑
n=1

c1
βa1n2 + · · ·+

Nm∑
n=1

cm
βamn2

]
= −βa1N

2
1

[ ∞∑
n=N1+1

c1
βa1n2 + · · ·+

∞∑
n=Nm+1

cm
βamn2

]
,

where not all ci’s are zero. Finally using the fact that the left hand side of this equality is an algebraic integer and
the right hand side tends to zero as N →∞, we see that left hand side quantity of this equality is zero and we will
repeat this truncation process, till we reach ci = 0 for all i = 1, . . . ,m, which hence proves the theorem.

The remaining part of our article is divided into two sections. In Sections 2, we collect all the tools to prove the
main result in Theorem 1.2, and in Section 3, we complete the proof of the Theorem 1.2.

2. Preliminaries

Definition. Let m ≥ 1 be an integer. We say that the sequence (xn)n≥1 in Rm is uniformly distributed mod 1, if
for any subset E = [a1, b1]× [a2, b2]× · · · × [am, bm] of [0, 1)m, we have

lim
N→∞

card{n|1 ≤ n ≤ N, {xn} ∈ E}
N

=

m∏
i=1

(bi − ai), (2.1)

where {xn} denotes the fractional parts of each co-ordinates of xn.

We need the following Theorem which can be found in [[6], pp 49].

Theorem 2.1. Let p(x) = (p1(x), ..., pm(x)), where all pi(x) are real polynomials, and suppose p(x) has the property
that for each nonzero lattice point h = (h1, . . . , hm) ∈ Zm, the polynomial (h,p(x)) = h1p1(x) + · · ·+ hmpm(x) has
at least one non constant term with irrational coefficient. Then the sequence (p(n))n, n = 1, 2, . . ., is uniformly
distributed mod 1 in Rm.

As a consequence of Theorem 2.1, we have the following important propositions, which are very crucial for the
proof of Theorem 1.2.

Proposition 2.1. Let 1 ≤ ` ≤ m be integers and let α1, α2, . . . , α`, α`+1, . . . , αm be real numbers satisfying the
following

(1) 1, α1, . . . , α` are Q-linearly independent, and
(2) α`+j ∈ Q, for j = 1, 2, . . . ,m− `.

Then for any positive integer s, there exist infinitely many positive integers N1 such that

1√
s+ 1

< {αiN1} <
1√
s

for i = 1, . . . , `

and

{α`+jN1} = 0 for j = 1, 2, . . . ,m− `.

Proof. We denote the common denominator of α`+1, α`+2, . . . , αm by d. Consider the following polynomials

qi(x) = dαix, for i = 1, 2, . . . , `.

For any nonzero lattice point h = (h1, h2, . . . , h`), the quantity (h,q(x)) given by the polynomial

Q(x) = d(h1α1 + · · ·+ h`α`)x.

Since 1, α1, . . . , α` are Q-linearly independent, the polynomial Q(x) = (h,q(x)) = d(h1α1 + · · · + h`α`)x has non
constant irrational coefficient. Therefore the polynomial q(x) satisfies the hypothesis of Theorem 2.1 and hence we
conclude that the sequence

(q(n))n = (q1(n), . . . , q`(n))n

is uniformly distributed mod 1. For a given positive integer s, let the subset

E =

[
1√
s+ 1

,
1√
s

]`
of [0, 1]`.
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Since the quantity
(

1√
s
− 1√

s+1

)
> 0 for all positive integer s, by (2.1), there exist infinitely many positive integers

N such that
1√
s+ 1

< {Ndαi} <
1√
s
, for k = 1, 2, . . . , `.

Hence, by taking N1 = dN , we get infinitely many positive integers N1 such that 1√
s+1

< {αiN1} < 1√
s

for

i = 1, . . . , `, and {α`+jN1} = 0 for j = 1, 2 . . . ,m− `. This proves the assertion. �

Proposition 2.2. Let 1 ≤ ` ≤ m be integers and let α1, . . . , α`, α`+1, . . . , αm be positive real numbers satisfying the
following

(1) 1, α1, . . . , α` are Q-linearly independent, and

(2) α`+j =
∑̀
k=1

bj,kαk for all j = 1, 2, . . . ,m− `, where bj,k ∈ Q.

Let d > 1 be a fixed positive integer which is divisible by the common denominator of bj,k for all j and k. Then
there exist a sufficiently small real number ε > 0, ηk = ηk(bj,k) with 0 < ηk < 1 for all j = 1, 2, . . . ,m − ` and
k = 1, . . . , `, positive integers L`+1, . . . , Lm and infinitely many positive integers N such that

ηk < {Nαk} < ηk + ε2 for k = 1, 2, . . . , `

and

A`+j(ε) :=
εL`+j + r

d
< {Nα`+j} <

εL`+j + ε2 + r

d
:= B`+j(ε)

for some non-negative integer r with 0 ≤ r ≤ d and for all j = 1, 2, . . . ,m− `. Further, for a given positive integer
h, we have

B`+j(ε)

A`+j+i(ε)
< 1 +

1

2h
for `+ 1 ≤ i < j ≤ m− `.

Proof. Consider the following polynomials

qi(x) = αix, for i = 1, 2, . . . , `.

For any non-zero lattice point h = (h1, h2, . . . , h`), the quantity (h,q(x)) given by the polynomial

Q(x) = (h1α1 + · · ·+ h`α`)x.

Since 1, α1, . . . , α` are Q-linearly independent, the polynomial Q(x) = (h,q(x)) = (h1α1 + · · · + h`α`)x has non
constant irrational coefficient. Therefore, the polynomial q(x) satisfies the hypothesis of Theorem 2.1 and hence
we conclude that the sequence

(q(n))n = (q1(n), . . . , q`(n))n

is uniformly distributed mod 1.
By hypothesis, note that αj > 0 for all j. Therefore, for any given j = 1, 2, . . . ,m− `, there exists k0 such that

bj,k0 > 0. Therefore, for every 1 ≤ j ≤ m− `, there exists positive integers e1, . . . , e` such that∑̀
k=1

dbj,kek > 0 for all j = 1, 2, . . . ,m− `.

We choose least positive integers e1, e2, . . . , e` such that the above is true. Choose ε such that

0 < ε <
1

2h/2d2e1e2 · · · e`
∏m−`
j=1

(∑`
k=1 d|bj,k|ek

)
and set ηk = εek for all k = 1, 2, . . . , `. Clearly by the choice of ε, we see that 0 < ηk < 1. Also for all
j = 1, 2, . . . ,m− `, we define the positive integer L`+j as follows;∑̀

k=1

dbj,kηk = ε

(∑̀
k=1

dbj,kek

)
:= εL`+j > 0.

Consider the subset E of [0, 1]` as

E = [η1, η1 + ε3]× [η2, η2 + ε3]× · · · × [η`, η` + ε3].

Since the quantity ηk + ε3 − ηk = ε3 > 0 for every k, by (2.1), there exists an infinite subset T of N such that

ηk < {Nαk} < ηk + ε3, for all k = 1, 2, . . . , ` and for all N ∈ T. (2.2)
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Now we work with this set T . For any N ∈ T , by hypothesis, consider

Nα`+j =
∑̀
k=1

bj,kNαk =
∑̀
k=1

bj,k ([Nαk] + {Nαk}) .

Since d is common denominator of bj,1, . . . , bj,`, by multiplying d both sides to the above equality, we have

dNα`+j −
∑̀
k=1

dbj,k[Nαk] =
∑̀
k=1

dbj,k{Nαk}. (2.3)

Notice that the second term on the left hand side of (2.3) is an integer. In order to prove the second assertion, we
first claim the following.

Claim 1. For every j, 1 ≤ j ≤ m− `, we have

εL`+j <

(∑̀
k=1

dbj,k{Nαk}

)
< εL`+j + ε2

holds for infinitely many positive integers N ∈ T .

By (2.2), we have ∑̀
k=1

dbj,kηk <
∑̀
k=1

dbj,k{Nαk} <
∑̀
k=1

dbj,kηk +
∑̀
k=1

dbj,kε
3. (2.4)

Since ∑̀
k=1

dbj,kηk = ε

(∑̀
k=1

dbj,kek

)
= εL`+j ,

by substituting the estimate in (2.4), we get

εL`+j <
∑̀
k=1

dbj,k{Nαk} < εL`+j + ε2

by the choice of ε. This proves Claim 1.

By the choice of ε, we see that 0 < ηk < 1 and εL`+j + ε2 < 1, for all j = 1, 2, . . . ,m − `. Thus from (2.3), we
conclude that

{Ndα`+j} =
∑̀
k=1

dbj,k{Nαk},

and hence by Claim 1, we get

εL`+j < {Ndα`+j} < εL`+j + ε2, for j = 1, 2, . . . ,m− `. (2.5)

Therefore there exist infinitely many N ∈ T satisfying (2.5); that is, for all natural number N ∈ T , we have

εL`+j
d

<
{Ndα`+j}

d
<
εL`+j + ε2

d
for j = 1, 2, . . . ,m− `.

Since

{Ndα`+j} = Ndα`+j − [Ndα`+j ] = d[Nα`+j ] + d{Nα`+j} − [Ndα`+j ],

by re-writing the above equality, we have

{Ndα`+j}
d

= {Nα`+j}+
d[Nα`+j ]− [Ndα`+j ]

d
.

Thus, from (2.5), we obtain that

εL`+j
d

< {Nα`+j}+
d[Nα`+j ]− [Ndα`+j ]

d
<
εL`+j + ε2

d
(2.6)

holds for N ∈ T . By Hermite’s identity, for any natural number n, we know that

[nα] = [α] +

[
α+

1

n

]
+ · · ·+

[
α+

n− 1

n

]
≤ [α] + [α+ 1] + · · ·+ [α+ 1] = n[α] + n− 1

for all real number α ≥ 1 and hence n[α] ≤ [nα] ≤ n[α] + n− 1.
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First we note that in the inequality n[α] ≤ [nα], the case n[α] = [nα] occurs when
[
α+ j

n

]
= [α] for all

1 ≤ j ≤ n − 1, otherwise this inequality is strict. This can be seen as follows: if n[α] = [nα], then by Hermite’s
identity, we get

n[α] = [α] + · · ·+ [α] = n[α] = [α] +

[
α+

1

n

]
+ · · ·+

[
α+

n− 1

n

]
.

Then from this inequality combining with the fact [α] ≤
[
α+ r

n

]
for 1 ≤ r ≤ n − 1, we conclude that equality

n[α] = [nα] holds if and only if
[
α+ r

n

]
= [α] for all 1 ≤ r ≤ n− 1.

In our case, we have n = d which is a fixed integer and α = Nα`+j where N varies over the elements of T . Since
T is infinite, there exist an infinite subset T0 ⊂ T and an integer r with 0 ≤ r ≤ d− 1 such that

[dNα`+j ]− d[Nα`+j ] = r for all N ∈ T0.

Thus from (2.5), for every 1 ≤ j ≤ m− `, we have

εL`+j + r

d
< {Nα`+j} <

εL`+j + ε2 + r

d

holds for all N ∈ T0. Note that by the choice of ε, the quantity (εL`+j + ε2 + r)/d is much less than 1.

For the moreover part of the proposition, by the choice of ε, and by noting that B`+j(ε) and A`+j+i(ε) are lying
in a tiny interval inside (r/d, (r + 1)/d), we can conclude the assertion. This proves the proposition. �

Lemma 2.1. Let b1 < b2 < · · · < b` be given positive integers and for each i = 1, 2, . . . , `, let fi : N → Z\{0}
such that fi(n) = O(nk) for some non-negative integer k. Let β > 1 be a real algebraic integer such that all its
Galois conjugates are distinct from β and have absolute value less than or equal to 1. Let T be an infinite subset
of natural numbers N and for all large enough integer N ∈ T , we let N1 = N1(N) be a linear function of N and

Ni = [
√

(b1/bi)N1] for all i = 2, 3, . . . , `. Let

XN1 := βa1N
2
1

(
c0 +

N1∑
n=1

c1f1(n)

βb1n2 + · · ·+
N∑̀
n=1

c`f`(n)

βb`n2

)

for some algebraic integers ci ∈ K = Q(β) such that |XN1
| = O

(
1

βNc

)
for some positive constant c and for all

large enough N ∈ T with the implied constant in O does not depend on N . Then XN1 = 0.

Proof. Note that by the definition of Ni’s it is clear that XN1
is an algebraic integer in K with the property that

|XN1
| = O

(
1

βNc

)
. If we prove that the norm of XN1

, denoted by norm(XN1
), in K is 0, then it follows that

XN1 = 0. In order to prove norm(XN1) = 0, we estimate all the conjugates of XN1 and prove that their product is
< 1. Being an integer, XN1

= 0 follow at once.

Let σ : K → C be a non trivial embedding of K. Now, we estimate the conjugate of σ(XN1
) as

|σ(XN1)| =

∣∣∣∣∣σ(β)b1N
2
1

(
σ(c0) +

N1∑
n=1

σ(c1)f1(n)

σ(β)b1n2 + · · ·+
N∑̀
n=1

σ(c`)f`(n)

σ(β)b`n2

)∣∣∣∣∣
≤ |σ(β)|`1N

2
1 |σ(c0)|+

N1∑
n=1

|f1(n)σ(c1)||σ(β)|b1N
2
1−b1n

2

+ · · ·+
N∑̀
n=1

|f`(n)σ(c`)||σ(β)|b1N
2
1−b`n

2

.

Since b1N
2
1 − bin2 ≥ 0 for all n = 1, . . . , Ni and for all i = 1, 2, . . . , ` and by the hypothesis |σ(β)| ≤ 1 for every

embedding σ 6= id : K → C, we obtain

|σ(XN1
)| ≤ H

(
1 +

N1∑
n=1

|f1(n)|+ · · ·+
N∑̀
n=1

|f`(n)|

)
,

where H = max{|σ(ci)| : σ 6= id : K → C and i = 0, 1, . . . , `}. Using fi(n) = O(nk) for some k ≥ 0 with some
absolute constant involved in O, we get the estimate for |σ(XN1

)|

|σ(XN1)| = O

(
1 +

N1∑
n=1

nk + · · ·+
N∑̀
n=1

nk

)
.
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By the Faulhaber’s formula, it is well-known that.

Ni∑
n=1

nk =
Nk+1
i

k + 1
+

1

2
Nk
i +

k∑
n=2

Bn
n!

k!

k − n+ 1
Nk−n+1
i ,

where Bn is the nth Bernoulli’s number. Therefore for fix non-negative integer k, we have

Ni∑
n=1

nk =
Nk+1
i

k + 1
+

1

2
Nk
i +

k∑
n=2

Bn
n!

k!

k − n+ 1
Nk−n+1
i = O(Nk+1

i ),

where the constant involved in O depends only on k. By substituting this estimate, we obtain

|σ(XN1
)| = O(1 +Nk+1

1 + · · ·+Nk+1
m ) = O(Nk+1

1 ) (2.7)

where the constant involved in O does not depend on N . Since

|norm(XN1
)| = |XN1

|
∏

σ 6=id:K→C
|σ(XN1

)|,

by (2.7), it follows that

|norm(XN1)| = O

(
(Nk+1

1 )d−1 ×
(

1

βN
c
1

))
= O

(
1

βN
c′
1

)
for some positive constant c′ where d is the degree of K over Q and the constant involved in O depends only on
k, `, β and ci’s. Thus by choosing N1 sufficiently large, we clearly see that |norm(XN1)| < 1 and hence we get
norm(XN1

) = 0. �

We prove a technical proposition which roughly says that for linearly independence of series, it is enough to
consider the partial sums, with mild conditions.

Proposition 2.3. Let b1 < b2 < · · · < b` be given positive integers and for each i = 1, 2, . . . , `, let fi : N→ Z\{0}
such that fi(n) = O(nk) for some non-negative integer k. Let β > 1 be a real algebraic integer such that all its
Galois conjugates are distinct from β and have absolute value less than or equal to 1. Let T be an infinite subset
of natural numbers N and for all large enough integer N ∈ T , we let N1 = N1(N) be a linear function in N and

let Ni = [
√

(b1/bi)N1] for all i = 2, 3, . . . , ` such that for any integer i with 1 ≤ i ≤ ` and for any integer r ≥ 0,
suppose that

bi(Ni + r)2 − b1N2
1 ≥ r(2N1 + r). (2.8)

If

c0 + c1

∞∑
n=1

f1(n)

βb1n2 + · · ·+ c`

∞∑
n=1

f`(n)

βb`n2 = 0 (2.9)

for some algebraic integers ci ∈ Q(β) for all i = 0, 1, . . . , `, then we get

c0 + c1

N1∑
n=1

f1(n)

βb1n2 + · · ·+ c`

N∑̀
n=1

f`(n)

βb`n2 = 0 (2.10)

for all large enough N ∈ T .

Proof. Let N ∈ T be a large enough integer and N1 is a positive integer defined as a function of N and Ni =
[
√

(b1/bi)N1] for all i = 2, 3, . . . , ` such that for any integer i with 1 ≤ i ≤ ` and for any natural number r, we have
(2.8) holds true. Then by (2.9), we get

c0 + c1

N1∑
n=1

f1(n)

βb1n2 + · · ·+ c`

N∑̀
n=1

f`(n)

βb`n2 = −c1
∞∑

n=N1+1

f1(n)

βb1n2 − · · · − c`
∞∑

n=N`+1

f`(n)

βb`n2 .

Multiplying by βb1N
2
1 on both sides, we get

βb1N
2
1

[
c0 + c1

N1∑
n=1

f1(n)

βb1n2 + · · ·+ c`

N∑̀
n=1

f`(n)

βb`n2

]
= −βb1N

2
1

[
c1

∞∑
n=N1+1

f1(n)

βb1n2 + · · ·+ c`

∞∑
n=N`+1

f`(n)

βb`n2

]
. (2.11)

Let

XN1
:= βb1N

2
1

(
c0 +

N1∑
n=1

c1f1(n)

βb1n2 + · · ·+
N∑̀
n=1

c`f`(n)

βb`n2

)
.
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Then by the definition of Ni’s, it follows that XN1
is an algebraic integer in K = Q(β). If we prove that |XN1

| =

O

(
1

βN1

)
for all large enough N ∈ T with the implied constant in O does not depend on N , then by Lemma 2.1,

it follows that XN1
= 0 and the assertion follows.

Since fi(n) = O(nk) for some integer k ≥ 0 with an absolute constant involved in O, and by (2.8) with the fact
that Ni ≤ N1, we have∣∣∣∣∣−βb1N2

1

[
ci

∞∑
n=Ni+1

fi(n)

βbin2

]∣∣∣∣∣ ≤ C|ci|
[

(Ni + 1)k

β2N1+1
+

(Ni + 2)k

β2(2N1+2)
+ · · ·+ (Ni + r)k

β2(2N1+r)
+ · · ·

]

≤ C|ci|
[

(N1 + 1)k

β2N1+1
+

(N1 + 2)k

β2(2N1+2)
+ · · ·+ (N1 + r)k

β2(N1+r)
+ · · ·

]
≤ C|ci|

βN1

(
1 +

1

β
+

1

β2
+ · · ·

)
= O

(
1

βN1

)
, (2.12)

because k is a given constant and the estimate is valid for all large enough N1, where the implied O constant
depends only on ci’s and β, not on the parameter N . Therefore, by Lemma 2.1, the proposition follows. �

We prove another technical lemma and a proposition which are useful in the proof of the main theorem.

Lemma 2.2. Let b1 < b2 < · · · < b` be given positive integers and for each i = 1, 2, . . . , `, let fi : N→ Z\{0} such
that fi(n) = O(nk) for some non-negative integer k. Let β > 1 be a real algebraic integer such that all its Galois
conjugates are distinct from β and have absolute value less than or equal to 1. Let T be an infinite subset of natural
numbers N and for all large enough integer N ∈ T , we let N1 = N1(N) be a linear function of N , Ni = [

√
(b1/bi)N1]

for all i = 2, 3, . . . , ` and r1 = r1(N) ≤ 2
√
b1b2N1 − 2. Suppose that

biN
2
i − b1N2

1 + r1 ≥ κ2N c′′

1 (2.13)

for all i = 2, . . . , ` and for some positive constants c′′ ≤ 1 and κ2. If

c0 + c1

N1∑
n=1

f1(n)

βb1n2 + · · ·+ c`

N∑̀
n=1

f`(n)

βb`n2 = 0, (2.14)

for some algebraic integers ci ∈ Q(β), not all zero, then

c0 + c1

N1−1∑
n=1

f1(n)

βb1n2 + · · ·+ c`

N`−1∑
n=1

f`(n)

βb`n2 = 0. (2.15)

Proof. For a large enough integer N ∈ T , it is given that

c0 + c1

N1∑
n=1

f1(n)

βb1n2 + · · ·+ c`

N∑̀
n=1

f`(n)

βb`n2 = 0.

This implies

c0 + c1

N1−1∑
n=1

f1(n)

βb1n2 + · · ·+ c`

N`−1∑
n=1

f`(n)

βb`n2 =
c1f1(N1)

βb1N
2
1

+ · · ·+ c`f`(N`)

βb`N
2
`

.

Multiplying this equality by βb1N
2
1−r1 , to get

βb1N
2
1−r1

(
c0 + c1

N1−1∑
n=1

f1(n)

βb1n2 + · · ·+ c`

N`−1∑
n=1

f`(n)

βb`n2

)
=

c1f1(N1)

βb1N
2
1+r1−b1N2

1

+ · · ·+ c`f`(N`)

βb`N
2
`−b1N

2
1+r1

.

Note that

b1N
2
1 − r1 − bi(Ni − 1)2 = b1N

2
1 − biN2

i + 2biNi − bi − r1
and since b1N

2
1 − biN2

i ≥ 0 and r1 ≤ 2
√
b1b2N1 − 2, we see that the left hand side of this equality is an algebraic

integer in Q(β). By the hypothesis (2.13) and fi(Ni) = O(Nk
i ) for a fixed non-negative integer k, we see that the

right hand side is O

(
1

βNc′′

)
for some positive constant c′′ ≤ c with implied constant in O does not depend on N .

Therefore, by Lemma 2.1, we conclude that c0 + c1

N1−1∑
n=1

f1(n)

βb1n2 + · · ·+ c`

N`−1∑
n=1

f`(n)

βb`n2 = 0. This proves the lemma. �
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Proposition 2.4. Let b1 < b2 < · · · < b` be given positive integers and for each i = 1, 2, . . . , `, let fi : N→ Z\{0}
such that fi(n) = O(nk) for some non-negative integer k. Let β > 1 be a real algebraic integer such that all its
Galois conjugates are distinct from β and have absolute value less than or equal to 1. Let T be an infinite subset
of natural numbers N and for all large enough integer N ∈ T , we let N1 = N1(N) be a linear function in N ,

Ni = [
√

(b1/bi)N1] for all i = 2, 3, . . . , ` and r1 = r1(N1) are as in Lemma 2.2 such that (2.13) is satisfied. If
(2.14) is true for some algebraic integers ci ∈ Q(β), not all zero, then c1 = 0.

Proof. By hypothesis and by Lemma 2.2, we get

c0 + c1

N1−1∑
n=1

f1(n)

βb1n2 + · · ·+ c`

N`−1∑
n=1

f`(n)

βb`n2 = 0.

Now, multiplying both sides by βb1(N1−1)2−r1 , we get

c1f1(N1 − 1)

βr1
= −βb1(N1−1)2−r1

(
c0 +

N1−2∑
n=1

c1f1(n)

βb1n2 + · · ·+
N`−1∑
n=1

c`f`(n)

βb`n2

)
. (2.16)

Since Ni’s satisfies (2.13), we see that

b1(N1 − 1)2 − r1 − bi(Ni − 1)2 ≥ cN1

for all i = 2, 3, . . . ,m. If we let the quantity on the right hand side of (2.16) be XN1−1, then XN1−1 is an algebraic
integer in K = Q(β). Since XN1−1 = c1f1(N1− 1)/βr1 and f1(n) = nk for a fixed natural number k, it is clear that

|XN1−1| = O

(
1

βNc′′

)
for some positive constant c′′ < 1. Therefore, by Lemma 2.1, we get XN1−1 = 0. Putting

this information in (2.15), we get c1 = 0. This proves the assertion. �

3. Proof of Theorem 1.2

Since a1, . . . , am are distinct positive integers, we can assume, if necessary by rewriting the indices, that a1 <
a2 < · · · < am. Suppose to the contrary that the numbers in (1.1) are linearly dependent over Q(β). Then there
exist algebraic integers c0, c1, . . . , cm ∈ Q(β) not all zero such that

c0 + c1

∞∑
n=1

f1(n)

βa1n2 + c2

∞∑
n=1

f2(n)

βa2n2 + · · ·+ cm

∞∑
n=1

fm(n)

βamn2 = 0. (3.1)

We divide the proof of this theorem into three cases.

Case 1.
√
a1/aj ∈ Q for all 1 ≤ j ≤ m.

Since
√
a1/aj ∈ Q for every j, multiplying by common denominator d, we have

√
a1/ajdN is an integer for every

integer N ∈ N and for j = 2, 3, . . . ,m. Choose a large positive integer N which is our parameter and set N1 = dN .

Then set Ni =
(
a1
ai

) 1
2

N1 which is integer for i = 2, 3, . . .m and hence

a1N
2
1 − aiN2

i = a1N
2
1 − ai

(
a1
ai

)
N2

1 = 0. (3.2)

Also note that for all i = 2, 3, . . . ,m and for any natural number `, we have

ai(Ni + `)2 − a1N2
1 = ai

((
a1
ai

) 1
2

N1 + `

)2

− a1N2
1 = 2`(a1ai)

1
2N1 + ai`

2 ≥ `(2N1 + `). (3.3)

By these choices of Ni, we truncate the series in (3.1) and by multiplying by βa1N
2
1 on both sides to get

βa1N
2
1

[
c0 + c1

N1∑
n=1

f1(n)

βa1n2 + · · ·+ cm

Nm∑
n=1

fm(n)

βamn2

]
= −βa1N

2
1

[
c1

∞∑
n=N1+1

f1(n)

βa1n2 + · · ·+ cm

∞∑
n=Nm+1

fm(n)

βamn2

]
. (3.4)

Then by (3.2), we see that the quantity in the left hand side in (3.4) is an algebraic integer and lies in Q(β). By
(3.3), we see that these choices of Ni satisfy the hypothesis of Proposition 2.3. Thus by Proposition 2.3, we get

c0 +

N1∑
n=1

c1f1(n)

βa1n2 +

N2∑
n=1

c2f2(n)

βa2n2 + · · ·+
Nm∑
n=1

cmfm(n)

βamn2 = 0 (3.5)
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valid for all large enough integer N1. By (3.2), (3.5) and with any choice of r1 = [cN c′

1 ] for some positive constants
c and c′ ≤ 1, we see that the choices of Ni’s are satisfying the hypothesis of Lemma 2.2 to conclude that

c0 +

N1−1∑
n=1

c1f1(n)

βa1n2 +

N2−1∑
n=1

c2f2(n)

βa2n2 + · · ·+
Nm−1∑
n=1

cmfm(n)

βamn2 = 0,

holds for all large enough integer N1. Therefore, by Proposition 2.4, we conclude that c1 = 0.

Now, we replace the role of N1 by N2 and a1 by a2. Then by applying the same procedure, we get c2 = 0. Thus,
by continuing the same way, we can prove that c1 = 0 = c2 = · · · = cm and hence c0 = 0, which is a contradiction
and hence the assertion follows in this case.

Case 2. 1,
√
a1/a2, . . . ,

√
a1/am are Q-linearly independent.

In this case, by Proposition 2.1, there exist infinitely many positive integers N1 such that

1√
10am + 1

<

{(
a1
ai

) 1
2

N1

}
<

1√
10am

for i = 2, 3, . . . ,m. (3.6)

If we set Ni =

[(
a1
ai

) 1
2

N1

]
for i = 2, 3, . . . ,m, then, by (3.6), we have

(
a1
ai

) 1
2

N1 −
1√

10am
< Ni <

(
a1
ai

) 1
2

N1 −
1√

10am + 1
, i = 2, . . . ,m.

For all i = 2, 3, . . . ,m, we note that

a1N
2
1 − aiN2

i ≥ a1N2
1 − ai

(√
a1
ai
N1 −

1√
10am + 1

)2

=
2
√
a1ai√

10am + 1
N1 −

ai√
10am + 1

> 0. (3.7)

Also, note that for i = 2, 3, . . . ,m and for any integer k ≥ 1, we have

ai(Ni + k)2 − a1N2
1 > ai

((
a1
ai

) 1
2

N1 −
1√

10am
+ k

)2

− a1N2
1

= ai

(
k − 1√

10am

)2

+ 2
√
aia1N1

(
k − 1

10am

)
≥ k(2N1 + k) (3.8)

holds for all sufficiently large values of N1. With these choices of Ni, by (3.7) and (3.1), we see that the quantity
in the left hand side, say, YN1 of the following equality

βa1N
2
1

[
c0 +

N1∑
n=1

c1f1(n)

βa1n2 + · · ·+
Nm∑
n=1

cmfm(n)

βamn2

]
= −βa1N

2
1

[ ∞∑
n=N1+1

c1f1(n)

βa1n2 + · · ·+
∞∑

n=Nm+1

cmfm(n)

βamn2

]

is an algebraic integer in K = Q(β) and by (3.8), we see that |YN1
| = O

(
1

βNc

)
for some positive constant c ≤ 1.

Therefore, by Lemma 2.1, we get

c0 +

N1∑
n=1

c1f1(n)

βa1n2 + · · ·+
Nm∑
n=1

cmfm(n)

βamn2 = 0.

Now, by setting r1 =

[
2am

10am/2
N1

]
, we see that

aiN
2
i − a1N2

1 + r1 ≥ ai

(√
a1
ai
N1 −

1√
10am

)2

− a1N2
1 +

2am
10am/2

N1 − 1

≥ −2

√
a1ai
10am

N1 +
2am

10am/2
N1 − 1 ≥ cN1

for some positive constant c as m ≥ 2. Therefore, by Lemma 2.2, we get

c0 +

N1−1∑
n=1

c1f1(n)

βa1n2 +

N2−1∑
n=1

c2f2(n)

βa2n2 + · · ·+
Nm−1∑
n=1

cmfm(n)

βamn2 = 0
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and this holds true for infinitely many N ∈ T . Hence, by Proposition 2.4, we conclude that c1 = 0.

Now, we replace the role of N1 by N2 and a1 by a2. Then by applying the same procedure, we get c2 = 0. Thus,
by continuing the same way, we can prove that c1 = 0 = c2 = · · · = cm and hence c0 = 0, which is a contradiction
and hence the assertion follows in this case.

Case 3. 1,
√
a1/a2, . . . ,

√
a1/am are Q-linearly dependent.

By Case 1, we can always assume that
√
a1/ai is irrational for some integer i with 2 ≤ i ≤ m. In this case, for

some integer 2 ≤ ` ≤ m, the numbers

1,
√
a1/a2, . . . ,

√
a1/a`

are Q-linearly independent. We can assume that the set {
√
a1/a2, . . . ,

√
a1/a`} is a maximal Q-linearly independent

subset of {
√
a1/aj : 2 ≤ j ≤ m}, by renaming the indices, if necessary. Thus we have

√
a1/a`+i =

∑̀
k=2

bi,k
√
a1/ak, for all i = 1, 2, . . . ,m− `, where bi,k ∈ Q.

By Proposition 2.2, there exists ε > 0 and there exist infinitely many positive integers N1 such that

0 < ηi <

{(
a1
ai

) 1
2

N1

}
< ηi + ε2 < 1, for i = 2, . . . , `, (3.9)

for each j = 1, . . . ,m− `,

0 < A`+j(ε) =
εL`+j
d

+
r

d
<

{(
a1
a`+j

) 1
2

N1

}
<
εL`+j + ε2

d
+
r

d
= B`+j(ε) < 1, (3.10)

for some integer 0 ≤ r ≤ d − 1 where d is a positive integer such that db`+j,k ∈ Z. Here we are freely using the
notations of Proposition 2.2 by replacing bi by ai. Also, from the construction of ηi, (εL`+j + ε2)/d in the proof of

Proposition 2.2, we can make sure that ηi,
εL`+j + ε2

d
≤ 1

2h
for a given natural number h. For this case, we take

h = 10dam. We set

Ni =



[(
a1
ai

) 1
2

N1

]
, for i = 2, . . . , `;

[(
a1
a`+j

) 1
2

N1

]
, for all j = 1, . . . ,m− ` with 0 ≤ r ≤ d− 1;

Then by the choices of Ni, we rewrite (3.1) as

βa1N
2
1

[
c0 +

N1∑
n=1

c1f1(n)

βa1n2 + · · ·+
Nm∑
n=1

cmfm(n)

βamn2

]
= −βa1N

2
1

[ ∞∑
n=N1+1

c1f1(n)

βa1n2 + · · ·+
∞∑

n=Nm+1

cmfm(n)

βamn2

]
(3.11)

We shall prove that a1N
2
1 − aiN

2
i ≥ 0 and for any integer k ≥ 1, ai(Ni + k)2 − a1N

2
1 ≥ k(2N1 + k) for all

i = 1, 2, . . . ,m.

In this case, by definition, we get a1N
2
1 − aiN2

i ≥ a1N
2
1 − ai

a1N
2
1

ai
= 0 for all i = 1, 2, . . . ,m. Hence, for all

i = 1, 2, . . . , ` and for all natural number k, by (3.9), we have

ai(Ni + k)2 − a1N2
1 ≥ ai

((
a1
ai

)1/2

N1 − ηi − ε2 + k

)2

− a1N2
1

= 2
√
a1ai(k − (ηi + ε2))N1 + ai(k − (ηi + ε2))2 ≥ k(2N1 + k),

as ηi + ε2 < 1 and ai ≥ 2. Now, for all j = 1, 2, . . . ,m− ` and for all natural number k, by (3.10), we have

a`+j(N`+j + k)2 − a1N2
1 ≥ a`+j

((
a1
a`+j

)1/2

N1 −B`+j(ε) + k

)2

− a1N2
1

= 2
√
a1a`+j(k −B`+j(ε))N1 + a`+j(k −B`+j(ε))2 ≥ k(2N1 + k),
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where B`+j(ε) =
εL`+j + ε2

d
+
r

d
<

1

2h
+
r

d
< 1 and a`+j ≥ 2. Therefore, the quantity in the left hand side of (3.1),

say, ZN1 is an algebraic integer and |ZN1 | = O(β−N
c
1 ) for some positive constant c ≤ 1. Therefore, by Lemma 2.1,

we get

c0 +

N1∑
n=1

c1f1(n)

βa1n2 + · · ·+
Nm∑
n=1

cmfm(n)

βamn2 = 0. (3.12)

Subcase 1. r = 0.

Set r1 = [2
√

2N1] and for i = 1, 2, . . . , `, we have

aiN
2
i + ri − a1N2

1 ≥ ai

(√
a1
ai
N1 − (ηi + ε2)

)2

+ r1 − a1N2
1 ≥ −2

√
a1ai(ηi + ε2)N1 + ai(ηi + ε2)2 +N1

= (1− 2
√
a1ai(ηi + ε2))N1 + ai(ηi + ε2)2.

Since ηi+ε
2 <

1

25am
, we see that (1−2

√
a1ai(ηi+ε

2) > 0. Hence for all large enough N1’s we have aiN
2
i +r1−a1N2

1 ≥
cN1 for some positive constant c. Now, for all j = 1, 2, . . . ,m− `, we get

a`+jN
2
`+j + r1 − a1N2

1 ≥ a`+j

(√
a1
a`+j

N1 −B`+j(ε)
)2

+ r1 − a1N2
1

≥ −2
√
a1a`+jB`+j(ε)N1 + a`+jB`+j(ε)

2 + 2
√

2N1 − 1

= 2N1(
√

2−√a1a`+jB`+j(ε)) + a`+jB`+j(ε)
2 − 1.

Since in this subcase by (3.10), B`+j(ε) =
εL`+j+ε

2

d , we see that by the choice of ε, the quantity
√

2−√a1a`+jB`+j >
0. Hence for all large values of N1, we obtain a`+jN

2
`+j+r1−a1N2

1 ≥ c1N1 for some positive constant c1. Therefore,
by Lemma 2.2, we get

c0 +

N1−1∑
n=1

c1f1(n)

βa1n2 +

N2−1∑
n=1

c2f2(n)

βa2n2 + · · ·+
Nm−1∑
n=1

cmfm(n)

βamn2 = 0

and this holds true for infinitely many N ∈ T . Hence, by Proposition 2.4, we conclude that c1 = 0.

Now, we replace the role of N1 by N2 and a1 by a2. Then by applying the same procedure, we get c2 = 0. Thus,
by continuing the same way, we can prove that c1 = 0 = c2 = · · · = cm and hence c0 = 0, which is a contradiction
and hence the assertion follows in this subcase.

Subcase 2. r is non-zero.

In this subcase, we prove ci = 0 in a different way as the above method doesn’t work. Set r1 = [
√
N1]. Multiply

βa1N
2
1−r1 on both sides of (3.12) to get

c0β
a1N

2
1−r1 +

N1∑
n=1

c1f1(n)βa1N
2
1−r1

βa1n2 + · · ·+
Nm∑
n=1

cmfm(n)βa1N
2
1−r1

βamn2 = 0.

Therefore, we get

c1f1(N1)

βr1
= c0β

a1N
2
1−r1 +

N1−1∑
n=1

c1f1(n)βa1N
2
1−r1

βa1n2 + · · ·+
Nm∑
n=1

cmfm(n)βa1N
2
1−r1

βamn2 . (3.13)

Note that

a1N
2
1 − r1 − a1(N1 − 1)2 = 2a1N1 − r1 − a− 1 ≥ 2N1,

and for all i = 2, . . . , ` and by the choice of r1, we have

a1N
2
1 − r1 − aiN2

i = a1N
2
1 − ai

((
a1
ai

) 1
2

N1 − ηi

)2

− r1 > 2ηi
√
a1aiN1 −

√
N1 − aiη2i > c3(ε)N1
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and for all j = 1, . . . ,m− `, we have

a1N
2
1 − r1 − a`+jN2

`+j = a1N
2
1 − a`+j

((
a1
a`+j

) 1
2

N1 −A`+j(ε)

)2

− r1

> 2
√
a1a`+jA`+j(ε)N1 −

√
N1 − a`+jA`+j(ε)2 > c4(ε)N1,

holds for all large values of N1 and for some positive constants c3(ε) and c4(ε) which do not depend on N1. By
these inequalities we see that the right hand side of the equality (3.13) is an algebraic integer and lies in Q(β) and

it is O
(
β−N

c
1

)
for some positive constant c ≤ 1. Therefore, by Lemma 2.1, we conclude that

c0 +

N1−1∑
n=1

c1f1(n)

βa1n2 + · · ·+
N∑̀
n=1

c`f`(n)

βamn2 + · · ·+
Nm∑
n=1

cmfm(n)

βamn2 = 0.

Consequently, from (3.12) we obtain c1 = 0 and (3.12) becomes

c0 +

N2∑
n=1

c2f2(n)

βa2n2 + · · ·+
Nm∑
n=1

cmfm(n)

βamn2 = 0. (3.14)

By continuing this way, we assume that ci = 0 for all i = 1, 2, . . . , `. Thus in order to finish the proof, we need to
prove that c`+j = 0 for all j = 1, . . . ,m− ` by assuming

c0 +

N`+1∑
n=1

c`+1f`+1(n)

βa`+1n2 + · · ·+
Nm∑
n=1

cmfm(n)

βamn2 = 0. (3.15)

Multiplying by βa`+1N
2
`+1 on both sides of (3.15) to get

c`+1f`+1(N`+1)

βr1
= −βa`+1N

2
`+1−r1

c0 +

N`+1−1∑
n=1

c`+1f`+1(n)

βa`+1n2 + · · ·+
Nm∑
n=1

cmfm(n)

βamn2

 . (3.16)

Since

a`+1N
2
`+1 − r1 − a`+1(N`+1 − 1)2 > 2a`+1N1 −

√
N1 − a2`+1 > 0,

and for all j = 2, . . . ,m− `,

a`+1N
2
`+1 − r1 − a`+jN2

`+j > a`+1

((
a1
a`+1

) 1
2

N1 −B`+1(ε)

)2

− a`+j

((
a1
a`+j

) 1
2

N1 −A`+j(ε)

)2

− r1

= −2
√
a1a`+1B`+1(ε)N1 + 2A`+j(ε)

√
a1a`+jN1 + a`+1B

2
`+1(ε)−A`+j(ε)2a`+j − r1

> 2
√
a1
(
A`+j(ε)

√
a`+j −B`+1(ε)

√
a`+1

)
N1 −

√
N1.

In order to prove a`+1N
2
`+1 − r1 − a`+jN2

`+j > 0, we need to show that a`+j > a`+1

(
B`+1(ε)
A`+j(ε)

)2
. In the moreover

part of Proposition 2.1, by taking h = 10dmax{a1, . . . , am}, we can get 1 <

(
B`+1(ε)

A`+j(ε)

)2

< 1 +
1

2am
. This proves

that a`+j > a`+1

(
B`+1(ε)
A`+j(ε)

)2
. By these inequalities, we see that the right hand side of (3.16) is an algebraic integer.

Since the left hand side O(β−N
c
1 ) for some positive constant c ≤ 1, by , we conclude that c`+1 = 0 and we get

c0 +

N`+2∑
n=1

c`+2f`+2(n)

βa`+2n2 + · · ·+
Nm∑
n=1

cmfm(n)

βamn2 = 0.

Hence, by continuing this process, we get ci = 0 for all i = ` + 1, . . . ,m and hence c0 = 0, a contradiction. Thus
this proves the subcase 2 and Case 3. Hence the theorem follows.
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