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ABSTRACT. For a natural number n, the permutation (n!) is defined as the left-to-
n—1

right product of the first n cycles, namely, (n!) = ] (1,2,...,(n — k)) (see [1]). In
k=0

this article, we prove that for any natural number n, 2 is a primitive root of 2n + 1 if

and only if 2n + 1 = p® for some odd prime number p and for some natural number

k such that the permutation (n!) has exactly k orbits. We also prove that a prime

number p is a Sophie Germain prime if and only if the permutation (p!) has at most

two orbits.
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1. Introduction. A prime number p is called a Sophie Germain prime [2] if
2p + 1 is also a prime number. It is well-known that Fermat’s last theorem is true
for such a prime exponent. However, it is still unknown on the infinitude of such
prime numbers. For any natural number n > 1, an integer a which is coprime to
n is called a primitive root of n (see for instance, [2]) if the order of ¢ modulo n is
¢(n), the Euler totient function.

On a set of symbols A and a permutation o on A, it is easy to see that a
relation ~ on A defined as ¢ ~ j for any i,j € A, if there exists k € Z such that
o¥(i) = j is an equivalence relation. The equivalence classes of this equivalence
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relation are called orbits of o (refer [3]). It is easy to see that, the orbits of the
identity permutation of A are the singleton subsets of A and hence the identity
permutation has |A| orbits. Now, a permutation o is said to be transitive if o has
exactly one orbit.

In 1969, for any natural number n, Aulicino and Goldfeld in [1] defined a per-

mutation (n!) as (n!) = [] (1,2,...,(n —k)) and they proved that the permutation
k=0

(n!) is transitive if and only if 2n+ 1 is a prime number with 2 as a primitive root
of 2n+1. Here, it is to be noted that the product of permutations is in left-to-right
order.

In this article, we present an extension of the result of Aulicino and Goldfeld
by considering 2n + 1 to be prime power and the permutation (n!) having more
than one orbit, which provides an equivalent condition for 2 being a primitive root
of 2n 4+ 1. More precisely, we prove

THEOREM 1.1. Let n be any natural number. Then 2 is a primitive root of 2n + 1
if and only if 2n 4+ 1 = p* for some odd prime number p and for some natural
number k such that the permutation (n!) has exactly k orbits.

And, we prove a relation connecting a Sophie Germain prime p with the per-
mutation (p!) as follows.

THEOREM 1.2. Let p be a prime number. Then p is a Sophie Germain prime if
and only if the permutation (p!) has at most two orbits.

We also prove the following result connecting natural number n, the permuta-
tion (n!) and the order of 2 modulo 2n + 1.

THEOREM 1.3. Let n be a natural number such that 2n + 1 is prime. Then (n!)
has k orbits if and only if the order of 2 modulo 2n + 1 is w

2. Preliminaries. In this section, we first recall some notations from [1]. For
any natural number n, the permutation P(2n 4 1) is defined as

P(2n +1) H135 (20 + 1 — 2K)).

We recall a result proved by Aulicino and Goldfeld in [1] as follows.

PROPOSITION 2.1. (Aulicino and Goldfeld [1]) Let m > 3 be any odd integer and
let j be any odd integer such that 1 < j <m — 2.

m—1

(1) The permutations (™5

!) and P(m) have the same number of orbits.
(2) If the image of j in the permutation P(m) is denoted by A,,(j), then,
Jjt+m

Am(j) = Grmam
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(3) Let O (j) = {A%(5), AL, (§), ..., A7 (4)} be the orbit of j in P(m), where
AD, () = AL(5) = j and AR (j) = Am(Ay, (7). Let

. LAY () +m A% () +m . AL () +m
Sm(3)={A9n(J), <2> (231 ;AL(J)7~.-,7(25)2 :
1 A H(G) +m
g A

be the set derived from O,,(j) where 25++1 = (2™ Ak=1(j)+m). Then S,,(1)
is a subgroup of (Z/mZ)* generated by 2.

We observe the following.

LEMMA 2.1. Let m > 3 be any odd integer and j € (Z/mZ)* be any odd integer.
Then A (j) € (Z/mZ)*.

Proof.  Suppose there exists an odd element j of (Z/mZ)* such that A,,(j) &
(Z/mZ)*. Then

j+m . . j+m
_J 1 Am __J v
((j+m,2m)’m> 7 Lsince Anli) = 0 o)

= (j+m,m) # 1,

which is a contradiction to j € (Z/mZ)*. Therefore, A,,(j) € (Z/mZ)*. O

We recall the following results which are needed in the proof of Theorem 1.2.

THEOREM 2.1. (Theorem 1.1 in [5]) Let p > 2 be a prime number such that 2p+1
is a prime or prime power. Then 2 is a primitive root of 2p+ 1 if and only if p =1
(mod 4).

LEMMA 2.2. (Lemma 1.2 in [5]) Let p be an odd prime number such that 2p+1 =
q"* for some prime q and k > 2. Then q = 3, k is a prime and p = 1 (mod 4).

LEMMA 2.3. (Corollary 1.6 in [5]) Let p be an odd prime number. Then the

permutation (p!) is transitive if and only if 2p + 1 is a prime number and p = 1
(mod 4).

LEMMA 2.4. (Lemma 1 in [4]) Let m be odd and 1 < j < m—2 be also odd. Then

Sm () = {(2%j) (mod m) | 1 < k < ¢} where { is the order of 2 modulo Gy

3. Proof of Theorem 1.1. Let n be any natural number such that 2 is a
primitive root of 2n + 1. Then, by Gauss’s theorem, we conclude that 2n + 1 = p*
for some odd prime number p and k € N.



4 M. MAKESHWARI, V.P. RAMESH AND R. THANGADURAI

In order to prove the permutation (n!) has k orbits, we shall show that the
orbits of P(2n + 1) precisely are

O2041(1), 0201 (), - - ., Oz 1 (PF71).

Now, since 2 is a primitive root of 2n + 1, by the definitions of O« (1) and S, (1),
we have O« (1) is the set of all odd integers residues in S, (1) and S, (1) = {2°
(mod p*) |1 <€ <pF ' p—1)} = (Z/p*2)".

If k =1, then S, (1) = (Z/pZ)* and hence O,(1) is the only orbit of P(2n +1).
Therefore, the permutation (n!) has only one orbit in this case. Now, we can
assume that k& > 1.

In this case, p & S, (1), since p ¢ (Z/p"Z)*. Then note that S,.(p) = {2‘p
(mod p*) | £ € N}. If 2%1p = 2%2p (mod p*) for some ¢;,¢ € N, then 21 = 2
(mod p*~1) which implies that ¢; = ¢» (mod ord,.-1(2)). Since 2 is a primitive
root of p* (and hence modulo p*~!), we conclude that | S,x(p) |[= p*~2(p — 1).
Thus, if k = 2, then, it is easy to see that Sp2(1) U Sy2(p) = {1,2,...,p*> — 1} and
hence Op2(1) and O,z (p) are the only two orbits of P(2n 4 1).

Now, assume that k& > 2. Now note that p? & Spk(p). For otherwise, if p? €
S, (p), then p? = 2°p (mod p*) for some 1 < ¢ < p*~2(p — 1) which implies that
p =2° (mod p*~!), a contradiction. Since S, (p?) = {2p? (mod p¥) | £ € N}, in
a similar way, we can conclude that | S,.(p?) |= p"3(p — 1).

By repeating this procedure, we get S (p") = {2 (mod p*)

| £ € N} and
| Spe(p®) |=p"""1(p—1) for all i < k— 1. Since | Spr(1) | + | Spe(p) |

4+ 4 |
k—1
Spe (0" 1) =% — 1, we get | ] Spr(p) = {1,2,3,...,pF —1}.

a=0
Note that if 1 < j < p* is any odd integer, then j € O, (p) for some 0 < i <
k — 1. Hence, Opx(1), Opr(p), ..., Oy (p"~1) are the k orbits of P(2n + 1) which
implies that (n!) has k orbits.

Conversely, suppose 2 is not a primitive root of 2n + 1. Therefore, (Z/(2n +
1)Z)* # (2). Then observe that there exists an odd integer g such that g € (Z/(2n+
1)Z)*\(2). Suppose that any element g € (Z/(2n + 1)Z)*\(2) is an even integer.

g g g
Then (%TQ"“)) is odd and hence we get 7(97 29T

g & (2). Then, by Lemma 2.1, it follows that O,x(g) C (Z/(2n+ 1)Z)*. Therefore,
we get Opi (1), 0,k (9), Opr (p), - - -, Opr (p"~1) are disjoint orbits of P(2n+1), which
is a contradiction to (n!) has k orbits. O

€ (2), a contradiction as

4. Proof of Theorem 1.2. Suppose p is a Sophie Germain prime. We prove
that (p!) has at most 2 orbits. When p = 2, we clearly see that the permutation
(2!) = (1 2) has only one orbit. Hence we can assume that p is an odd prime. If
p=1 (mod 4), then by Lemma 2.3, we can conclude that the permutation (p!) has
single orbit. Thus, we can assume that p = 3 (mod 4).

In this case, it is enough to prove that Ogpy1(1) and Oapy1(p) are the only two
orbits of P(2p+ 1). Since p = 3 (mod 4), by Theorem 2.1, we conclude that 2 is



SOPHIE GERMAIN PRIME AND PERMUTATION 5

not a primitive root of 2p+1. Since 2p+1 is also a prime number, we conclude that
the order of 2 modulo 2p + 1 is p. Thus, S2,41(1) = {2 (mod 2p+1) |1 <i < p}.

If p € Sopi1(1), then p = 2¢ (mod 2p + 1) for some 1 < i < p and hence we get
pP =297 =(2°)'=1 (mod 2p +1)

as the order of 2 is p modulo 2p + 1. Therefore, we get (—1)? = (2p)? = 1
(mod 2p + 1), a contradiction to p = 3 (mod 4). Therefore, we conclude that
p & Sap+1(1). Then by the definition of S,11(p), we can get Sapi1(p) = {2'p
(mod 2p+1) | 1 <i < p}. Since Sapi1(1) N Sopi1(p) = 0 and | Sopya(1) | + |
Sop+1(D) |= 2p, we get Sopy1(1) U Sopyi1(p) = (Z/(2p + 1)Z)*. Therefore, if j is
any odd integer satisfying 1 < j < 2p — 1, then we see that either j € Ogp41(1) or
J € Ogpr1(p). Thus, Ozpy1(1) and Ogpy1(p) are the two orbits of P(2p + 1) and
hence (p!) has two orbits.

Conversely, suppose p is a prime number such that 2p+1 is not a prime number.
Hence p must be an odd prime such that p > 7. We consider the following two
cases.

Case 1. 2p + 1 = p1pof, where pq,p2 are two distinct odd prime factors of 2p + 1
and / is an odd positive integer.

In order to get a contradiction, we shall prove that P(2p+ 1) has at least three
orbits comprising, 02p+1(1), 02p+1(p1) and 02p+1(p2).

By Lemma 2.1, since Ogp41(1) contains only the odd integers of (Z/(2p+1)Z)*
and p; and py are odd prime divisors of 2p+ 1, we conclude that p1,ps & Ogpy1(1).
Now, to finish the proof, we shall prove that p2 & Oapy1(p1).

Let j be any odd positive integer such that j is not a multiple of py and jp; <
2p + 1. Then we see that

Jp1 + pip2! _ §+ pol
jp1+ pip2t, 201028)  (jp1 + pipat, 21P2t

Azp+1(jp1) = ( )p1-

Therefore, we conclude that every element of the orbit Ogp,y1(p1) is a multiple of
p1 and hence pa & Ogpy1(p1). Thus, P(2p + 1) has at least three orbits, namely,
O2p+1(1), O2p11(p1) and Ogpt1(p2), a contradiction to (p!) has at most two orbits.

Case 2. 2p+ 1 = ¢*, for some odd prime ¢ and a positive integer k > 1.

By Lemma 2.2, we must have ¢ = 3 and k is a prime. Further, since 322;1 =4is
not a prime number, we can assume that k£ > 3. In this case, to get a contradiction,
we shall prove that Ogp11(1), O2p+1(3) and Og,11(9) are disjoint orbits of P(2p+1).

Similar to the previous case, it is easy to see that 3,9 & Oap11(1) and we prove
that 9 Q/ 02p+1(3).

If j is any odd positive integer such that it is not a multiple of 3 and 35 < 2p+1,
then by the computation

, 3j + 3 j+3!
A2P+1(31) = (3j+3k,23k) = (3j+3k,23k) )
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we see that the elements of the orbit Oapi1(3) are multiples of 3 which are not
divisible by 9 and hence 9 € Ozp11(3). Thus, Ozpt1(1), O2p+1(3), and Oapi1(9)
are disjoint orbits of P(2p+ 1), a contradiction. Therefore, 2p+ 1 must be a prime
number. This proves the theorem. O

5. Proof of Theorem 1.3. Let n be any natural number such that 2n + 1 is
prime. We shall prove that P(2n + 1) has k orbits if and only if the order of 2

modulo 2n + 1 is W

Let 1 < j < 2n — 1 be odd, by Lemma 2.4, it follows that Sa,.1(j) = {(2¥7)
(mod 2n +1) | 1 <k < ordan+1(2)} and are cosets of Sapy1(1) = (2) in (Z/(2n +
1)Z)*. Now, by definitions of Ogy,+1(j) and Sa,+1(j), we have Oa,11(j) is the set
all odd integers residues in Sa,11(J).

Therefore, the number of orbits of P(2n+ 1) is equal to the number of cosets of
(2) in (Z/(2n + 1)Z)* which is equal to —22"*1) Hence, P(2n + 1) has k orbits

ordan+1(2) "

if and only if the order of 2 modulo 2n + 1 is W a
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