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Abstract. For a natural number n, the permutation (n!) is defined as the left-to-

right product of the first n cycles, namely, (n!) =
n−1∏
k=0

(1, 2, . . . , (n− k)) (see [1]). In

this article, we prove that for any natural number n, 2 is a primitive root of 2n+1 if
and only if 2n+ 1 = pk for some odd prime number p and for some natural number
k such that the permutation (n!) has exactly k orbits. We also prove that a prime
number p is a Sophie Germain prime if and only if the permutation (p!) has at most
two orbits.

Mathematics Subject Classification (2020): Primary: 20B30; Secondary: 11A41.
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1. Introduction. A prime number p is called a Sophie Germain prime [2] if
2p+ 1 is also a prime number. It is well-known that Fermat’s last theorem is true
for such a prime exponent. However, it is still unknown on the infinitude of such
prime numbers. For any natural number n > 1, an integer a which is coprime to
n is called a primitive root of n (see for instance, [2]) if the order of a modulo n is
ϕ(n), the Euler totient function.

On a set of symbols A and a permutation σ on A, it is easy to see that a
relation ∼ on A defined as i ∼ j for any i, j ∈ A, if there exists k ∈ Z such that
σk(i) = j is an equivalence relation. The equivalence classes of this equivalence
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relation are called orbits of σ (refer [3]). It is easy to see that, the orbits of the
identity permutation of A are the singleton subsets of A and hence the identity
permutation has |A| orbits. Now, a permutation σ is said to be transitive if σ has
exactly one orbit.

In 1969, for any natural number n, Aulicino and Goldfeld in [1] defined a per-

mutation (n!) as (n!) =
n−1∏
k=0

(1, 2, . . . , (n− k)) and they proved that the permutation

(n!) is transitive if and only if 2n+1 is a prime number with 2 as a primitive root
of 2n+1. Here, it is to be noted that the product of permutations is in left-to-right
order.

In this article, we present an extension of the result of Aulicino and Goldfeld
by considering 2n + 1 to be prime power and the permutation (n!) having more
than one orbit, which provides an equivalent condition for 2 being a primitive root
of 2n+ 1. More precisely, we prove

Theorem 1.1. Let n be any natural number. Then 2 is a primitive root of 2n+1
if and only if 2n + 1 = pk for some odd prime number p and for some natural
number k such that the permutation (n!) has exactly k orbits.

And, we prove a relation connecting a Sophie Germain prime p with the per-
mutation (p!) as follows.

Theorem 1.2. Let p be a prime number. Then p is a Sophie Germain prime if
and only if the permutation (p!) has at most two orbits.

We also prove the following result connecting natural number n, the permuta-
tion (n!) and the order of 2 modulo 2n+ 1.

Theorem 1.3. Let n be a natural number such that 2n + 1 is prime. Then (n!)

has k orbits if and only if the order of 2 modulo 2n+ 1 is ϕ(2n+1)
k .

2. Preliminaries. In this section, we first recall some notations from [1]. For
any natural number n, the permutation P (2n+ 1) is defined as

P (2n+ 1) =

n∏
k=1

(1, 3, 5, . . . , (2n+ 1− 2k)).

We recall a result proved by Aulicino and Goldfeld in [1] as follows.

Proposition 2.1. (Aulicino and Goldfeld [1]) Let m ≥ 3 be any odd integer and
let j be any odd integer such that 1 ≤ j ≤ m− 2.

(1) The permutations (m−1
2 !) and P (m) have the same number of orbits.

(2) If the image of j in the permutation P (m) is denoted by Am(j), then,

Am(j) =
j +m

(j +m, 2m)
.
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(3) Let Om(j) =
{
A0

m(j), A1
m(j), . . . , Ar−1

m (j)
}
be the orbit of j in P (m), where

A0
m(j) = Ar

m(j) = j and Ak+1
m (j) = Am(Ak

m(j)). Let

Sm(j) =

{
A0

m(j),
A0

m(j) +m

2
, . . . ,

A0
m(j) +m

2s1
;A1

m(j), . . . ,
A1

m(j) +m

2s2
;

. . . Ar−1
m (j), . . . ,

Ar−1
m (j) +m

2sr

}
be the set derived from Om(j) where 2sk+1 = (2m, Ak−1

m (j)+m). Then Sm(1)
is a subgroup of (Z/mZ)∗ generated by 2.

We observe the following.

Lemma 2.1. Let m ≥ 3 be any odd integer and j ∈ (Z/mZ)∗ be any odd integer.
Then Am(j) ∈ (Z/mZ)∗.

Proof. Suppose there exists an odd element j of (Z/mZ)∗ such that Am(j) ̸∈
(Z/mZ)∗. Then(

j +m

(j +m, 2m)
,m

)
̸= 1, since Am(j) =

j +m

(j +m, 2m)

=⇒ (j +m,m) ̸= 1,

which is a contradiction to j ∈ (Z/mZ)∗. Therefore, Am(j) ∈ (Z/mZ)∗. 2

We recall the following results which are needed in the proof of Theorem 1.2.

Theorem 2.1. (Theorem 1.1 in [5]) Let p > 2 be a prime number such that 2p+1
is a prime or prime power. Then 2 is a primitive root of 2p+1 if and only if p ≡ 1
(mod 4).

Lemma 2.2. (Lemma 1.2 in [5]) Let p be an odd prime number such that 2p+1 =
qk for some prime q and k ≥ 2. Then q = 3, k is a prime and p ≡ 1 (mod 4).

Lemma 2.3. (Corollary 1.6 in [5]) Let p be an odd prime number. Then the
permutation (p!) is transitive if and only if 2p + 1 is a prime number and p ≡ 1
(mod 4).

Lemma 2.4. (Lemma 1 in [4]) Let m be odd and 1 ≤ j ≤ m−2 be also odd. Then
Sm(j) = {(2kj) (mod m) | 1 ≤ k ≤ ℓ} where ℓ is the order of 2 modulo m

(j,m) .

3. Proof of Theorem 1.1. Let n be any natural number such that 2 is a
primitive root of 2n+ 1. Then, by Gauss’s theorem, we conclude that 2n+ 1 = pk

for some odd prime number p and k ∈ N.
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In order to prove the permutation (n!) has k orbits, we shall show that the
orbits of P (2n+ 1) precisely are

O2n+1(1), O2n+1(p), . . . , O2n+1(p
k−1).

Now, since 2 is a primitive root of 2n+ 1, by the definitions of Opk(1) and Spk(1),
we have Opk(1) is the set of all odd integers residues in Spk(1) and Spk(1) = {2ℓ
(mod pk) | 1 ≤ ℓ ≤ pk−1(p− 1)} = (Z/pkZ)∗.

If k = 1, then Sp(1) = (Z/pZ)∗ and hence Op(1) is the only orbit of P (2n+1).
Therefore, the permutation (n!) has only one orbit in this case. Now, we can
assume that k > 1.

In this case, p ̸∈ Spk(1), since p ̸∈ (Z/pkZ)∗. Then note that Spk(p) = {2ℓp
(mod pk) | ℓ ∈ N}. If 2ℓ1p ≡ 2ℓ2p (mod pk) for some ℓ1, ℓ2 ∈ N, then 2ℓ1 ≡ 2ℓ2

(mod pk−1) which implies that ℓ1 ≡ ℓ2 (mod ordpk−1(2)). Since 2 is a primitive
root of pk (and hence modulo pk−1), we conclude that | Spk(p) |= pk−2(p − 1).
Thus, if k = 2, then, it is easy to see that Sp2(1) ∪ Sp2(p) = {1, 2, . . . , p2 − 1} and
hence Op2(1) and Op2(p) are the only two orbits of P (2n+ 1).

Now, assume that k > 2. Now note that p2 ̸∈ Spk(p). For otherwise, if p2 ∈
Spk(p), then p2 ≡ 2ℓp (mod pk) for some 1 ≤ ℓ ≤ pk−2(p − 1) which implies that
p ≡ 2ℓ (mod pk−1), a contradiction. Since Spk(p2) = {2ℓp2 (mod pk) | ℓ ∈ N}, in
a similar way, we can conclude that | Spk(p2) |= pk−3(p− 1).

By repeating this procedure, we get Spk(pi) = {2ℓpi (mod pk) | ℓ ∈ N} and
| Spk(pi) |= pk−i−1(p − 1) for all i ≤ k − 1. Since | Spk(1) | + | Spk(p) | + · · ·+ |

Spk(pk−1) |= pk − 1, we get

k−1⋃
a=0

Spk(pa) = {1, 2, 3, . . . , pk − 1}.

Note that if 1 ≤ j < pk is any odd integer, then j ∈ Opk(pi) for some 0 ≤ i ≤
k − 1. Hence, Opk(1), Opk(p), . . . , Opk(pk−1) are the k orbits of P (2n + 1) which
implies that (n!) has k orbits.

Conversely, suppose 2 is not a primitive root of 2n + 1. Therefore, (Z/(2n +
1)Z)∗ ̸= ⟨2⟩. Then observe that there exists an odd integer g such that g ∈ (Z/(2n+
1)Z)∗\⟨2⟩. Suppose that any element g ∈ (Z/(2n + 1)Z)∗\⟨2⟩ is an even integer.

Then
g

(g, 2ϕ(2n+1))
is odd and hence we get

g

(g, 2ϕ(2n+1))
∈ ⟨2⟩, a contradiction as

g ̸∈ ⟨2⟩. Then, by Lemma 2.1, it follows that Opk(g) ⊂ (Z/(2n+1)Z)∗. Therefore,
we get Opk(1), Opk(g), Opk(p), . . . , Opk(pk−1) are disjoint orbits of P (2n+1), which
is a contradiction to (n!) has k orbits. 2

4. Proof of Theorem 1.2. Suppose p is a Sophie Germain prime. We prove
that (p!) has at most 2 orbits. When p = 2, we clearly see that the permutation
(2!) = (1 2) has only one orbit. Hence we can assume that p is an odd prime. If
p ≡ 1 (mod 4), then by Lemma 2.3, we can conclude that the permutation (p!) has
single orbit. Thus, we can assume that p ≡ 3 (mod 4).

In this case, it is enough to prove that O2p+1(1) and O2p+1(p) are the only two
orbits of P (2p + 1). Since p ≡ 3 (mod 4), by Theorem 2.1, we conclude that 2 is
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not a primitive root of 2p+1. Since 2p+1 is also a prime number, we conclude that
the order of 2 modulo 2p+1 is p. Thus, S2p+1(1) = {2i (mod 2p+1) | 1 ≤ i ≤ p}.

If p ∈ S2p+1(1), then p ≡ 2i (mod 2p+ 1) for some 1 < i < p and hence we get

pp ≡ (2i)p = (2p)i ≡ 1 (mod 2p+ 1)

as the order of 2 is p modulo 2p + 1. Therefore, we get (−1)p ≡ (2p)p ≡ 1
(mod 2p + 1), a contradiction to p ≡ 3 (mod 4). Therefore, we conclude that
p ̸∈ S2p+1(1). Then by the definition of S2p+1(p), we can get S2p+1(p) = {2ip
(mod 2p + 1) | 1 ≤ i ≤ p}. Since S2p+1(1) ∩ S2p+1(p) = ∅ and | S2p+1(1) | + |
S2p+1(p) |= 2p, we get S2p+1(1) ∪ S2p+1(p) = (Z/(2p + 1)Z)∗. Therefore, if j is
any odd integer satisfying 1 ≤ j ≤ 2p− 1, then we see that either j ∈ O2p+1(1) or
j ∈ O2p+1(p). Thus, O2p+1(1) and O2p+1(p) are the two orbits of P (2p + 1) and
hence (p!) has two orbits.

Conversely, suppose p is a prime number such that 2p+1 is not a prime number.
Hence p must be an odd prime such that p ≥ 7. We consider the following two
cases.

Case 1. 2p+ 1 = p1p2ℓ, where p1, p2 are two distinct odd prime factors of 2p+ 1
and ℓ is an odd positive integer.

In order to get a contradiction, we shall prove that P (2p+1) has at least three
orbits comprising, O2p+1(1), O2p+1(p1) and O2p+1(p2).

By Lemma 2.1, since O2p+1(1) contains only the odd integers of (Z/(2p+1)Z)∗
and p1 and p2 are odd prime divisors of 2p+1, we conclude that p1, p2 ̸∈ O2p+1(1).
Now, to finish the proof, we shall prove that p2 ̸∈ O2p+1(p1).

Let j be any odd positive integer such that j is not a multiple of p2 and jp1 <
2p+ 1. Then we see that

A2p+1(jp1) =
jp1 + p1p2ℓ

(jp1 + p1p2ℓ, 2p1p2ℓ)
=

j + p2ℓ

(jp1 + p1p2ℓ, 2p1p2ℓ)
p1.

Therefore, we conclude that every element of the orbit O2p+1(p1) is a multiple of
p1 and hence p2 ̸∈ O2p+1(p1). Thus, P (2p + 1) has at least three orbits, namely,
O2p+1(1), O2p+1(p1) and O2p+1(p2), a contradiction to (p!) has at most two orbits.

Case 2. 2p+ 1 = qk, for some odd prime q and a positive integer k > 1.

By Lemma 2.2, we must have q = 3 and k is a prime. Further, since 32−1
2 = 4 is

not a prime number, we can assume that k ≥ 3. In this case, to get a contradiction,
we shall prove that O2p+1(1), O2p+1(3) and O2p+1(9) are disjoint orbits of P (2p+1).

Similar to the previous case, it is easy to see that 3, 9 ̸∈ O2p+1(1) and we prove
that 9 ̸∈ O2p+1(3).

If j is any odd positive integer such that it is not a multiple of 3 and 3j < 2p+1,
then by the computation

A2p+1(3j) =
3j + 3k

(3j + 3k, 23k)
=

j + 3k−1

(3j + 3k, 23k)
3,
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we see that the elements of the orbit O2p+1(3) are multiples of 3 which are not
divisible by 9 and hence 9 ̸∈ O2p+1(3). Thus, O2p+1(1), O2p+1(3), and O2p+1(9)
are disjoint orbits of P (2p+1), a contradiction. Therefore, 2p+1 must be a prime
number. This proves the theorem. 2

5. Proof of Theorem 1.3. Let n be any natural number such that 2n + 1 is
prime. We shall prove that P (2n + 1) has k orbits if and only if the order of 2

modulo 2n+ 1 is ϕ(2n+1)
k .

Let 1 ≤ j ≤ 2n − 1 be odd, by Lemma 2.4, it follows that S2n+1(j) = {(2kj)
(mod 2n+ 1) | 1 ≤ k ≤ ord2n+1(2)} and are cosets of S2n+1(1) = ⟨2⟩ in (Z/(2n+
1)Z)∗. Now, by definitions of O2n+1(j) and S2n+1(j), we have O2n+1(j) is the set
all odd integers residues in S2n+1(j).

Therefore, the number of orbits of P (2n+1) is equal to the number of cosets of

⟨2⟩ in (Z/(2n + 1)Z)∗ which is equal to ϕ(2n+1)
ord2n+1(2)

. Hence, P (2n + 1) has k orbits

if and only if the order of 2 modulo 2n+ 1 is ϕ(2n+1)
k . 2
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