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ABSTRACT. Klein’s modular j-function is defined to be
1 oo
j(z) = B} /A(z) = . + 7444 ) e(n)g"
n=1

where 2z € C with S(z) > 0, ¢ = exp(2inz), Fa(z) denotes the normalized
Eisenstein series of weight 4 and A(z) is the Ramanujan’s Delta function. In
this short note, we show that for each integer a > 1, the interval (a,4a(a+ 1))
(respectively, the interval (16a— 1, (4a+1)2)) contains an integer n with n = 7
(mod 8) such that c¢(n) is odd (respectively, c(n) is even).

1. INTRODUCTION

Let z be a complex number with $(z) > 0 and ¢ = €*™**. The modular invariant
j-function defined as

(1.1) J(z) =

where

(1.2) H (1—¢")

is the Ramanujan’s Delta function and

(1.3) Ey(2) =1+240 ) a3(n)q"

n=1

is the normalized Eisenstein series of weight 4. The Fourier expansion for j(z) is
: 1 —
(1.4) j(z) = ST > e(n)g
n=1

where ¢(n) are integers.

It is well known that ¢(n) is even whenever n # 7 (mod 8). Indeed, a result of
J. P. Serre implies that for almost all integers n # 7 (mod 8), one has ¢(n) = 0
(mod 2') for any integer ¢t > 1. Later, Ono and Taguchi [4] proved that for any
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t > 1, there is a positive integer ¢ such that for every set of distinct odd primes
P1,D2, " ,De, One has

c(pipz---pem) =0 (mod 2")

whenever m > 1 is coprime to pips---p; and pips---pem # 7 (mod 8). Also,
recently, Ono and Ramsey [3], extending the work of Alfes [I], proved that for any
D =7 (mod 8), there are infinitely many n such that ¢(Dn?) is even.

Regarding the odd parity of ¢(n), using the mod p analogue of Atkin-Lehner’s
theorem and using the generalized Borcherds product, Ono and Ramsey [3] proved
that for any D = 7 (mod 8), if there exists one odd integer n such that ¢(Dn?) is
odd, then there are infinitely many odd integers m such that c¢(Dm?) is odd. In
particular, it follows that there are infinitely many odd integers m = 7 (mod 8)
such that ¢(m) is odd. This can be seen by taking D = 7 and noting that ¢(7) is
odd.

In this short note, we shall prove the following theorems, in the spirit of O. Kol-
berg’s [2] proof of parity of partition function. Moreover, the following theorems
predict a range in which a suitable n = 7 (mod 8) can be chosen such that c¢(n) is
odd (respectively, even). In particular, our theorem gives an elementary proof of
the infinitude of n’s with n = 7 (mod 8) for which ¢(n) is odd (respectively, even).

Theorem 1.1. For every a > 1, there exists an integer n € (a,4a(a+ 1) — 1] with
n =7 (mod 8), such that c¢(n) is an odd integer. In particular, there are infinitely
many odd integers n =7 (mod 8) for which c(n) is an odd integer.

Note that when @ = 1 in Theorem 1.1, we get that the interval [1,7] contains
an integer n = 7 (mod 8) such that ¢(n) is odd. This must be n = 7. Indeed,
¢(7) = 44656994071935, which is an odd integer.

Corollary 1.2. For all x > 8, we have

{1<n<z : ¢n)isodd} ={n<z : n=7(mod 8) and c(n) is odd}
> ¢ologlog x,

for some positive constant cg.

Theorem 1.3. For all a > 1, there exists an integer n € [16a — 1, (4a + 1) — 1]
withn =7 (mod 8) such that c(n) is even. In particular, there exist infinitely many
integers n =7 (mod 8) for which c(n) is even.

When a = 1 in Theorem 1.3, we get that 15 and 23 lie in the interval [15,24].
Note that ¢(15) and ¢(23) are even integers.

Corollary 1.4. For all x > 15, we have
#{1<n<z:n=7 (mod8) and c(n) is even} > ¢ loglog x,
for some positive constant c; .

Corollary 1.5. For a given residue class ¢ (mod 2), there exist infinitely many n
such that c¢(n) = e (mod 2).

In their paper, Ono and Ramsey [3] mention that it is expected that for half of
the n =7 (mod 8), we should have ¢(n) odd.
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2. PROOFS OF THEOREMS AND COROLLARIES
We shall start with the following lemma.

Lemma 2.1. For all integer n > 1, we have

(2.1) Y e(n—(2m+1)?)=0 (mod 2).

m>0

Proof. The well-known Jacobi identity says that

(2.2) ﬁ(l —q")? = i(_l)k(% + 1)k tD/2,
n=1 k=0

Since (z + y)?" = 22" +¢y*>" (mod 2), we use (2.2) in (1.2) to write

(o) o0 o0

23) AR =q[J1 - =q) ¢ 0HD/2 =3¢ (mod 2),
n=1 n=0 n=0

By (1.3), we have E4(z) =1 (mod 2). Therefore, (1.1) becomes

j(z)A(z) =1 (mod 2).
From (1.4) and (2.3), we have
i(2)A(z) = (i C(n)q"> (i q(2”+1)2> (mod 2).
Therefore, we get -
1= i”;)c(n —(2k+1)?)¢" (mod 2).

Now by comparing the coefficients of g™ on both sides, we get the required congru-
ence. O

Proof of Theorem 1.1. Let a > 1 be a given integer. Assume that ¢(m) is even for
every m € (a,4a(a+ 1) — 1]. Put n =4a(a+1) in (2.1). We get

> c(da(a+1) - (2k+1)?) =) c(dala+1) —4k(k+1)—1) =0 (mod 2).
k>0 k>0

In the above congruence, the term corresponding to k = a is ¢(—1) which is indeed
1 and hence ¢(—1) # 0 (mod 2). When we put k = a — j, we get

4a(a+1) —4(a—j)a—j+1) —1=8ja—42+4j —1=4j(2a —j+1) — 1.
If we vary j =1,2,--- ,a — 1, then we see that
4j(2a—j+1)—1>42a—(a—1)+1)—1=4(a+2)—1>a
for all @ > 1. Therefore, if
c(da(a+1)—4k(k+1)—1) arealleven for all k =1,2,--- ;a—1

and k = a, the above integer is odd. Therefore, their sum cannot be even, which
is a contradiction. Hence there is an integer n € (a,4a(a+ 1) — 1] for which ¢(n) is
an odd integer.
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Since

j(2) = ————= 3" b(k)g™*T (mod 2),
q H(l _ q8n)3 k=-1
n=1

where b(k) = 0,1 (mod 2), by comparing the Fourier coefficients on both sides, we
get if n # 7 (mod 8), we have ¢(n) = 0 (mod 2) and if ¢(n) is odd, then n = 7
(mod 8). Therefore the integer n € (a,4a(a + 1) — 1] (for which ¢(n) is odd) must
be an odd integer and n =7 (mod 8). O

Proof Corollary 1.2. We want to count n < z for which ¢(n) is odd. For that we
define a9 = 1,a; = 7, for every k > 2

ap = 4dap_1(ap_1 +1)—1=4a?_ | +4ap_1 — 1.
Then, we partition the interval

[15 I] = [17 7] U (77 a2) U [a27 CL3) u---u [af—ha%) U [CL@JJ]

where £ is the largest integer k& such that ay < z. By Theorem 1.1, we know each
interval [ag_1,ax] contains at least one integer n = 7 (mod 8) for which c(n) is
odd. Hence, the number of n < z with n = 7 (mod 8) for which ¢(n) is odd is at
least ¢ and it is remains to find the value of ¢ as a function of . Since

ap = 4a;_, +4a,_, —1 < 8ai_, for all k >0,
we get

a, < 8% <8 forall k > 0.

Since ay < x, we see that £ > cglog z which proves the corollary. ([l

Proof of Theorem 1.3. For every a > 1, we denote the interval
I, == [16a — 1, (4a + 1)* — 1].

We need to prove that I, contains an integer n = 7 (mod 8) for which ¢(n) is even.
Suppose we assume that ¢(n) is odd for every integer n = 7 (mod 8) and n lies
in the interval I,. Put n = (4a+1)? — 1 in (2.1) and we get

> c(a+1)*—1-(2k+1)°) =0 (mod 2).

k>0
Note that the argument of ¢ in the summands is (4a + 1)2 — 1 — (2k + 1)? = —
(mod 8) and (4a+1)2—1—(2k+1)?2 € I, forall k = 0,1,--- ,2a— 1. When we put
Jj = 2a, we get ¢(—1) which is an odd integer. By assumption, we get 2a number of

I’s and ¢(—1) add up to 0 (mod 2), which is a contradiction as ¢(—1) is odd. Thus,
there exists n € I, with n =7 (mod 8) such that ¢(n) is an even integer. O

Proof Corollary 1.4. We want to count n < x with n = 7 (mod 8) for which ¢(n)
is even. Since we know ¢(15) and ¢(23) are even integers, we define ag = 1,a; = 15,
for every k > 2 as
ap = (4ap_1 +1)% — 1.
Then, we see that the disjoint union of the following intervals
[1,15] U (15,25) U a1, a2) U--- Ulag—1,a¢) U [as, z] C [1, 2]

where £ is the largest integer k such that ay < z. By Theorem 1.3, we know each
interval [ax_1,ax] contains at least one integer n = 7 (mod 8) for which c¢(n) is
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even. Hence, the number of n < z and n = 7 (mod 8) for which ¢(n) is even is at
least ¢. Since a; < 32a%_1 for all k£ > 0, we get,

ap < 32]%1%]671 < 322k forall k>0

and hence we get the result. O
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