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Starting with an elementary problem that appeared in the

Putnam mathematics competition, we proceed to discuss some

techniques of transcendental number theory and prove the

following result. If p, q, r are distinct primes and if c is a real

number with the property that pc, qc, rc are integers, then c

must be a non-negative integer. The tools used are some lin-

ear algebra and complex analysis. The zero-density estimate

method discussed here was used by Alan Baker to prove his

celebrated theorem on linear forms in logarithms. The ques-

tion as to whether we can replace three primes by two primes

is an open question.

1. A Putnam Problem

For all natural numbers n, evidently nc is an integer if c is any

non-negative integer. An obvious question is whether the con-

verse also holds true. This was a question in one of the Putnam

competitions and can be answered affirmatively as follows.

Putnam Problem. If nc is an integer for all natural numbers n,

then is it true that c must be a non-negative integer?

The proof will use forward differences defined for any function f

by:

(∆ f )(x) = f (x + 1) − f (x).

We may define ∆k f = ∆(∆k−1 f ) for any k > 1. It is easy to show

by induction on k that

(∆k f )(x) =

k
∑

j=0

(−1)k− j

(

k

j

)

f (x + j).

Now, since 2c is an integer, we conclude that c must be a non-

negative real number . If 0 < c < 1, consider the function
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f (x) = xc on the interval [n, n + 1] for any integer n satisfying

n > c1/(1−c) . Then, by the mean value theorem, there exists a

ξ ∈ (n, n + 1) satisfyingKeywords

Six exponentials theorem,

Siegel’s lemma, zero-density

estimate, transcendental method.

cξc−1 = (n + 1)c − nc ∈ N.

The choice of n implies that cξc−1 < 1, which is a contradiction.

Therefore, we may assume that c > 1, because if c = 1, there is

nothing to prove.

Since c > 1, there exists a unique integer k such that k−1 ≤ c < k.

Note that the function f (x) = xc is differentiable of order k on

[n, n + k] for every integer n ≥ 1. By the generalized mean value

theorem, there exists a ξ ∈ (n, n + k) satisfying

f (k)(ξ) = (∆k f )(n),

where

(∆k f )(n) =

k
∑

j=0

(−1)k− j

(

k

j

)

f (n + j).

Since (n + j)c is an integer for all integers j ≥ 0, we see that

(∆k f )(n) is an integer. Since

f (k)(ξ) = c(c − 1) . . . (c − k + 1)ξc−k ≥ 0,

we see that (∆k f )(n) is a non-negative integer. Also, since c < k

and ξ ∈ (n, n + k), we get

ξc−k =
1

ξk−c
<

1

nk−c
.

If nc is an integer for all

natural numbers n, then

is it true that c must be a

non-negative integer?

Since mc is integer for every integer m ≥ 1, we can choose n as

large as possible such that

f (k)(ξ) <
c(c − 1) . . . (c − k + 1)

nk−c
< 1

and hence we get, c(c− 1) . . . (c− k+ 1) = 0. Since k − 1 ≤ c < k,

we get c = k − 1.

The above solution immediately shows that the following modi-

fied finite version of the problem has an affirmative answer.
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Modified Putnam Problem. Let c ≥ 1 be a given positive real

number and set

M = ([c] + 1)! + [c] + 1,

where [c] is the integral part of c. If nc is an integer for all natural

numbers n satisfying 1 ≤ n ≤ M, then c must be an integer.

At this juncture, one may ask the following natural question.

Question. Let c be a given positive real number and let M be

the integer as defined above. Let S be a non-empty subset of

{1, 2, . . . ,M}. If nc is an integer for all n ∈ S , can we conclude

that c is an integer?

We take c = (log 3)/(log 2) and consider the corresponding M as

above. Then the set S = {2, 22, . . . , 2ℓ} for some natural number

ℓ with 2ℓ ≤ M is a subset of {1, 2, . . . ,M}. Also, note that for any

n = 2k ∈ S with 1 ≤ k ≤ ℓ, we have

nc = (2k)c = 2(k log 3)/(log 2) = 3k

is an integer. However, c = (log 3)/(log 2) is not an integer be-

cause 2r
, 3 for any integer r. Thus the above question is not true

for any non-empty subset S of {1, 2, . . . ,M}.

We shall observe the above example more closely. First note that

for all singleton subsets of {1, 2, . . . ,M}, the above question is not

true (by taking ℓ = 1 in the above example). Moreover, any two

elements in S are multiplicatively dependent1 1
We recall that two integers a

and b are said to be multiplica-

tively dependent, if there exist

integers x and y with (x, y) ,

(0, 0) such that axby = 1; other-

wise, they are called multiplica-

tively independent.

. The right question

to be asked may be the following.

Modified Question. Let c be a given positive real number and

let M be the integer as defined above. Let S be a subset of

{1, 2, . . . ,M} satisfying |S | ≥ 2 and any two elements of S are

multiplicatively independent. If nc is an integer for all n ∈ S ,

then can we conclude that c is an integer?

In 1966/67, K Ramachandra [1] and S Lang [2] (independently)

answered the above question in a more general setup (so called

the ‘six exponentials theorem’). In particular, one can deduce

the following statement. Let S be a subset of natural numbers
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such that |S | ≥ 3 and any two elements of S are multiplicatively

independent. If nc is an integer for all n ∈ S for some non-zero

real number c, then c must be an integer.

Let p and q be two

distinct prime numbers.

If pc and qc are integers

for some non-zero real

number c, can we

conclude that c is an

integer?

In 1944, L Alaoglu and P Erdős [3] asked the following optimal

question.

Alaoglu–Erdős Problem. Let p and q be two distinct prime num-

bers. If pc and qc are integers for some non-zero real number c,

can we conclude that c is an integer?

Indeed, it is expected that for any two multiplicatively indepen-

dent integers a and b, if ac and bc are integers for some non-zero

real number c, then c must be a non-negative integer.

The Alaoglu–Erdős problem is not yet solved till today even for

a particular pair of distinct prime numbers. In this discussion, we

shall prove a particular case of Lang–Ramachandra’s theorem.

The proof runs through the same path as the ‘six exponentials

theorem’ proved by S Lang and K Ramachandra, with much less

complications.

Theorem 1. If 2c, 3c and 5c are integers for some non-zero real

number c, then c must be integer.

Note that in the statement of Theorem 1, we can replace the

primes 2, 3 and 5 by any three distinct primes p, q and r and the

proof is valid verbatim, except for changing some explicit con-

stants.

2. Preliminaries

We recall some basic facts from linear algebra and complex anal-

ysis which are needed to prove Theorem 1.

§2.1. Linear Algebra – Siegel’s Lemma. In the undergraduate

course, when we solve a system of homogenous linear equations

in n-variables, we learnt that for a given system of homogeneous

linear equations with integer coefficients in n unknowns and m

equations, if n > m, then we have infinitely many n-tuples with

integer co-ordinates that are simultaneous solutions of the system.
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The following lemma is due to C L Siegel which deals with an

upper bound for the least such solution in terms of the coefficients

of the system of equations.

Lemma 2.1. (Siegel [2] and [4], p.213) Let n and m be given

integers such that 1 < m < n. Suppose

a11X1 + a12X2 + · · · + a1nXn = 0;

a21X1 + a22X2 + · · · + a2nXn = 0;

· · · · · · · · ·

am1X1 + am2X2 + · · · + amnXn = 0;

with ai j ∈ Z for all 1 ≤ i ≤ m and 1 ≤ j ≤ n is a system

of homogenous linear equations with integer coefficients. Sup-

pose |ai j | ≤ A for some real number A > 0. Then there exists

(y1, y2, . . . , yn) ∈ Zn\{(0, 0, . . . , 0)} such that

|yi | ≤ (2nA)m/(n−m) for all i = 1, 2, . . . , n.

The proof follows by a clever application of the pigeonhole prin-

ciple.

§2.2. Complex Analysis Tools. We recall some complex analysis

results which will be useful to prove Theorem 1.

(2.2.1) Identity Theorem [5]. Let f be an entire function on the

complex plane C. Suppose a sequence (zn)n in C converges to

some point z0 ∈ C and f (zn) = 0 for all (zn)n≥1. Then f is the zero

function. If f is an entire function

on C which has ‘lots of

zeros’ inside a disc D

centered at the origin and

radius R > 0. Then the

following Lemma asserts

that the functional value

of f inside the disc D is

‘relatively’ very small.

Sometimes it is also

known as ‘small value

estimates’.

(2.2.2) If f is an entire function on C which has ‘lots of zeros’

inside a disc D centered at the origin and radius R > 0. Then the

following Lemma asserts that the functional value of f inside the

disc D is ‘relatively’ very small. Sometimes it is also known as

‘small value estimates’.

Schwarz Lemma [5]. Let R > 0 be any real number and N ≥ 0

be any integer. Let f be an analytic function in a disc |z| ≤ R in

C. For any real number k with 0 < k < R, we assume that f has
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at least N zeros in the disc |z| ≤ k. Then

‖ f ‖k ≤
(

3k

R

)N

‖ f ‖R,

where

‖ f ‖k = sup
|z|=k

| f (z)|.

(2.2.3) Let x1, x2 and x3 be complex numbers such that they are

linearly independent over Q. Then for any non-zero polynomial

P(x, y, z) ∈ Z[x, y, z], the entire function P(ex1z, ex2z, ex3z) is not

identically zero function. In other words, we say the functions

ex1z, ex2z and ex3z are algebraically independent as functions over

C (see [6]).

(2.2.4) Let α be an irrational number. Then the set S = {aα + b :

a, b ∈ Z} is dense in R (see [7]).

3. Proof of Theorem 1

We prove Theorem 1 by a contradiction method. That is, by as-

suming c is not an integer, we get a contradiction. In order to

get a contradiction, we shall use a ‘transcendental method’. The

method allows one to construct a non-zero integer, say, m0 (re-

lated to the given inputs) and hence |m0| ≥ 1. Using the complex

analysis tools, we prove that |m0| < 1, which is a contradiction

and finishes the proof.

In order to construct such an integer, we create a system of linear

equations with integer coefficients where the number of variables

is strictly more than the number of equations. Then, the linear

algebra asserts that there are infinitely many integer solutions to

the system. We use one of the first non-zero integer solutions to

construct such an integer m0.

Let n be a very large integer, which acts as a parameter and choose

an integer r whose magnitude is roughly like 2n1/3. Then we can
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find integers auvw ∈ Z, not all zeros, and an entire function

F(z) =

r
∑

u=1

r
∑

v=1

r
∑

w=1

auvw2uz3vz5wz. (3.1)

In fact, we arrive at this entire function by creating a system of ho-

mogeneous linear equations with integer coefficients as follows.

For any given integers a and b with 1 ≤ a, b ≤
√

n, we consider

the following homogeneous linear equation

r
∑

u=1

r
∑

v=1

r
∑

w=1

2(ac+b)u3(ac+b)v5(ac+b)wXuvw = 0. (3.2)

Since, by hypothesis, 2c, 3c and 5c are integers, we see that the

above system of homogeneous linear equations has integer coef-

ficients. Further, each coefficient is bounded above by 30r
√

n(c+1).

Note that the number of variables to the system of equations is r3

which is roughly like 8n and the number of equations is
√

n
√

n =

n. Therefore, the above system has infinitely many solutions in

integers. Also, observe that n/(r3 − n) < 1.

By Siegel’s Lemma 2.1, there exists a non-zero integer solution,

say, (auvw) to the above system together with

|auvw | ≤ (2r3(30)r
√

n(c+1))n/(r3−n) ≤ C
r
√

n

1
,

for some positive constant C1 = 2(30)c+1, as e3 log r < 2r
√

n.

Note that not all auvw is 0. In this way, we construct the function

F(z) in (3.1)

By (3.2), we see that the entire function F(z) = 0 for all z =

ac + b with integers 1 ≤ a, b ≤
√

n. Since 2, 3 and 5 are distinct

primes, log 2, log 3 and log 5 areQ-linearly independent numbers.

Therefore, by (2.2.3), the complex functions e(log 2)z, e(log 3)z and

e(log 5)z are algebraically independent as functions over C. That is,

the complex functions 2z, 3z and 5z are algebraically independent

as functions over C. Since not all auvw are zero, we conclude that

F(z) is a non-zero entire function.
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Also, noteIt may happen that

F(cx + y) = 0 for all

integers x, y ∈ Z. Since c

is an irrational number,

the set

S := {cx + y : x, y ∈ Z} is

dense in R.

that since c is not an integer and 2c is an integer, we

see that c cannot be rational number. Therefore, c is an irrational

number.

It may happen that F(cx + y) = 0 for all integers x, y ∈ Z. Since c

is an irrational number, by (2.2.4), the set S := {cx + y : x, y ∈ Z}
is dense in R. Since F is an entire function in C and F(α) = 0

for all α ∈ S , by continuity, we conclude that F(β) = 0 for every

β ∈ R. Hence, by the identity theorem (2.2.1), we see that F is

identically zero on C, which is a contradiction.

Hence, there exists a least positive integer s such that

F(ac + b) = 0 for all 1 ≤ a, b ≤ s and F(a′c + b′) , 0 (3.3)

where either a′ = s+1 and 1 ≤ b′ ≤ s or b′ = s+1 and 1 ≤ a′ ≤ s.

Let z0 = a′c + b′ with a′ = s + 1 and 1 ≤ b′ ≤ s (and the other

case is similar). Then note that F(z0) is a non-zero integer and let

m0 = F(z0). Then m0 is the required integer satisfying

|m0| ≥ 1. (3.4)

Now, we need to get the upper bound for |m0|. This can be done

using complex analysis as follows.

Since F is an entire function, we estimate |F(z)| on |z| = R for any

real number R > 0. For any z ∈ C satisfying |z| = R, we have

|F(z)| ≤
r

∑

u=1

r
∑

v=1

r
∑

w=1

|auvw||2uz||3vz ||5wz|

≤ max |auvw |
r

∑

u=1

r
∑

v=1

r
∑

w=1

2r|z|3r|z|5r|z|

≤ C
r
√

n

1
r3(30)r|z| ≤ r3C

r(
√

n+R)

1
.

Thus, for any real number R > 0, we have

|F(z)| ≤ r3C
r(
√

n+R)

1
for all |z| = R where C1 = 2(30)c+1. (3.5)

Since m0 = F(a′c + b′) and |a′c + b′| ≤ 2(c + 1)s, we choose

R = s1+ 1
8 and k = 2(c + 1)s. Then, we see that |z0| = |a′c + b′| ≤
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k < R for all large enough n’s. Also note that in the disk |z| ≤ k,

the analytic function F has at least s2 number of zeros, namely,

F(ac + b) = 0 for all integers 1 ≤ a, b ≤ s. Therefore, by the

Schwarz’s Lemma 2.2.2, we get

|m0| = |F(z0)| ≤
(

6(c + 1)s

s1+ 1
8

)s2

‖F‖R ≤
(

6(c + 1)

s1/8

)s2

‖F‖R. (3.6)

By (3.5), we get,

‖F‖R ≤ r3C
r(
√

n+R)

1
. (3.7)

Therefore, by (3.4), (3.6) and (3.7), we get,

1 ≤ |m0| ≤
(

6(c + 1)

s1/8

)s2

r3C
r(
√

n+R)

1
.

By taking log both sides, we get,

0 ≤ s2 log(6(c+1))−
s2

8
log s+3 log r+(r(

√
n+R)) log C1. (3.8)

Since r = 2n1/3, s ≥
√

n and R = s1+ 1
8 , we see that

√
n ≤ s ≤ R,

r ≤ 2n1/3 ≤ 2s2/3 and

r(
√

n + R) ≤ 2rR ≤ 4s
2
3 s1+ 1

8 ≤ 4s1+ 19
24 .

Therefore, by (3.8), we get,

0 ≤ s2 log(6(c + 1)) − s2

8
log s + 3 log r + 4s1+ 19

24 log C1.

That is, we get,

s2

8
log s ≤ s2 log(6(c + 1)) + 4s1+ 19

24 log 2 + 4s1+ 19
24 (c + 1) log 30.

Finally, we arrive at

s5/24

(

1

8
log s − log(6(c + 1))

)

≤ 4 log 2 + 4(c + 1) log 30.

Note that right hand side of the above inequality is bounded and

left hand side can be made as large as possible by choosing the

parameter n very large. Since s ≥
√

n, the above inequality is not

possible. This proves Theorem 1.

One notes that if we take 2 and 3, instead of three primes, and we

apply the above method, then the inequality (3.8) fails to produce

|m0| < 1.
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