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Distribution of a Subset of Non-residues
Modulo p

R. Thangadurai and Veekesh Kumar

Dedicated to Professor V. Kumar Murty on his 60th birthday

Abstract In this article, we prove that the sequence consisting of quadratic non-1

residues which are not primitive root modulo a prime p obeys Poisson law whenever2

p − 1

2
− φ(p − 1) is reasonably large as a function of p. To prove this, we count the3

number of �-tuples of quadratic non-residues which are not primitive roots mod p,4

thereby generalizing one of the results obtained in Gun et al. (Acta Arith, 129(4):325–5

333, 2007, [9].6

Keywords Quadratic residues · Primitive roots · Finite fields7

Mathematics Subject Classification Primary 11N69 · Secondary 11A078

1 Introduction9

The values of the most arithmetic sequences are so fluctuating, it is of great interest10

to study the distribution and extract information using many randomness tests such11

as equidistribution, level spacing or pair correlation.12
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2 R. Thangadurai and V. Kumar

Erdős and Kac [4] (see also [13, 14]) showed that the number of prime factors of13

integers up to x is normally distributed with mean log log x and standard deviation14 √
log log x .15

The questions on the spacings between elements of arithmetic sequences, such as16

primes, quadratic residues, non-residues, primitive roots, integers that are co-prime17

to a given integer, values of binary quadratic forms, and the zeros of Riemann zeta18

function, are of great interest and have been studied in the literature.19

Davenport [3] studied the spacing between consecutive quadratic residues modulo20

a prime p. Then, Kurlberg and Rudnick [17], Granville and Kurlberg [7] and Kurl-21

berg [16] studied the spacing between consecutive quadratic residues mod n, where n22

is composite integer. Cobeli and Zaharescu [1] studied the spacing between consec-23

utive primitive roots modulo a prime p. Hooley [10–12] also considered the spacing24

between consecutive integers that are co-prime to an integer n. Gallagher [5] inves-25

tigated the spacing between consecutive primes, by assuming the Hardy–Littlewood26

prime k-tuple conjecture. Rudnick, Sarnak and Zaharescu [21] conjectured the dis-27

tribution of spacing between the fractional parts of n2α should obey the Poisson law28

and they proved some weaker result in this direction. Garaev, Luca and Shparlinski29

[6] obtained new information about the spacing between quadratic non-residues mod30

p. In particular, they showed that there exists a positive integer n � p1/2+ε, such31

that n! is a primitive root mod p.32

One can observe, from the known results, that almost all the arithmetic sequences33

obey Poisson law except for a few cases such as the zeros of the Riemann zeta34

function, where it is known to be normally distributed.35

In this article, we shall study the arithmetic sequence which consists of quadratic36

non-residue which are not primitive roots modulo a prime p. This particular type of37

residue was studied in [8, 9, 18, 19].38

Since the number of quadratic non-residues modulo a prime p is (p − 1)/2 and39

the number of primitive roots modulo p is φ(p − 1), where φ is the Euler phi-40

function, we see that the number of quadratic non-residues which are not primitive41

roots modulo p is42

k := p − 1

2
− φ(p − 1). (1)43

Hence, k = 0 if and only if p−1
2 = φ(p − 1) if and only if p = 2m + 1 for some44

integer m ≥ 1 if and only if p is a Fermat prime. Thus, in this article, we shall45

assume that any prime p means p �= 2m + 1 for any integer m ≥ 1.46

In order to understand the spacing between these particular residues modulo p,47

we first enumerate these residues in the increasing order as 1 < ν1 < ν2 < · · · <48

νk < p. Then, we see that the mean spacing of these residues is
p − 1

k
. We want to49

study how the elements νi ’s are placed in the interval (n, n + t] for some suitable50

real number t ≥ 1 and for integer n with 0 < n < n + t ≤ p. We formulate this in51

terms of a random variable.52
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Distribution of a Subset of Non-residues Modulo p 3

Let Xt be a random variable Xt : [1, p] → R defined by

Xt (n) = |{νi : νi ∈ (n, n + t]}|

for some real number t . One may ask the following natural question. For a given53

integer � ≥ 1, what is the probability density function Pt (Xt = �) for Xt as t → ∞54

and for all large enough primes p?55

In this article, we prove that the probability density function Pt (Xt = �) is Poisson56

as t → ∞, when the random variable Xt is restricted to the given interval I of57

suitable length of Fp for all primes p whose mean spacing is large enough. To prove58

this result, we apply the techniques employed in [1, 9] and on the way, this technique59

does generalize one of the main results of [9] in some sense.60

2 Preliminaries61

As we mentioned before, p is assumed to be a prime number which is not of the form62

2m + 1 for any integer m. The finite field with p elements is denoted by Fp, and its63

multiplicative group is denoted by F
∗
p which is known to be a cyclic group.64

An element g ∈ F
∗
p is said to be a primitive root modulo p if g is a generator of

the cyclic group F
∗
p. We abbreviate the term ‘quadratic non-residue which is not a

primitive root mod p’ by ‘QNRNP’. Once we know a primitive root, say, g modulo
p, the QNRNPs are precisely the elements of the set

{
g� : � = 1, 3, . . . , (p − 2) and (�, p − 1) > 1

}
.

Let I = {M + 1, M + 2, . . . , M + l} be an interval in {1, 2, . . . , p − 1} for some
integers M ≥ 0 and l ≥ 1. For any two disjoint subsets A and B of Fp, we define

N (A,B) = N (A,B, p, I)

to be the cardinality of the subset J of I, containing all the elements n ∈ I satisfying65

n + a is a QNRNP for every a ∈ A and n + b is not a QNRNP for every b ∈ B. When66

B = ∅, then we denote N (A,∅) by N (A).67

First, heuristically, we compute the magnitude of N (A,B) as follows.68

Among the p − 1 elements of F
∗
p, there is exactly k =

(
p−1

2 − φ(p − 1)
)

number

of QNRNPs. Hence, for a given element n ∈ F
∗
p, the probability that n + a being

a QNRNP is k/(p − 1) and the probability that n + b not being QNRNP is 1 −
k/(p − 1). Therefore, the probability that n + a being a QNRNP and n + b not
being a QNRNP is (

k

p − 1

)(
1 − k

p − 1

)
.
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4 R. Thangadurai and V. Kumar

For a given n ∈ F
∗
p, by assuming the independent nature of the elements n + a being

a QNRNP and n + b not being a QNRNP for a ∈ A and for b ∈ B, we see that the
probability that n + a being QNRNP for all a ∈ A and n + b not being QNRNP for
all b ∈ B is (

k

p − 1

)|A| (
1 − k

p − 1

)|B|
.

Therefore, it is reasonable to expect

N (A,B) ∼ |I|
(

k

p − 1

)|A| (
1 − k

p − 1

)|B|
.

We prove this fact when p is sufficiently large.69

Let μp−1 denote the multiplicative group of the set of all (p − 1)th roots of unity70

in C. Then let χ : F
∗
p → μp−1 be an isomorphism of groups between F

∗
p and μp−171

such that the dual group of F
∗
p is generated by χ. Then it is easy to observe that χ(g)72

is a (p − 1)th primitive root of unity if and only if g is a primitive root modulo p. Let73

η be a (p − 1)th primitive root of unity, and let g be a primitive root modulo p such74

that χ(g) = η. Since χ is a homomorphism, it follows that χ(gi ) = χi (g) = ηi for75

all integers i . Hence, we get χ(κ) = ηi with (i, p − 1) > 1 with some odd integer i76

if and only if κ is a QNRNP mod p.77

Let 0 ≤ � ≤ p − 2 be any integer. We define

β�(p − 1) =
∑

1≤i≤p−1
i odd, (i,p−1)>1

(
ηi
)�

,

where η is a primitive (p − 1)th root of unity. Note that β�(p − 1) is a complimentary78

sum of the well-known Ramanujan’s sum.79

The following lemma computes the characteristic function for the residues80

QNRNPs.81

Lemma 2.1 (Gun et al. [9]) We have

1

p − 1

p−2∑

�=0

β�(p − 1)χ�(n) =
{

1, if n is a QNRNP;
0, otherwise.

Lemma 2.2 (Gun et al. [9]) We have

p−1∑

�=0

|β�(p − 1)| = 2ω(p−1)φ(p − 1),

where ω(p − 1) denotes the number of distinct prime factors of p − 1.82

The following lemma is standard and can be found in [20].83
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Distribution of a Subset of Non-residues Modulo p 5

Lemma 2.3 For all primes p ≥ 5, we have

ω(p − 1) < 1.4
log p

log log p
.

The following theorem may be regarded as a generalization of Polya–Vinogradov84

theorem, and it is crucial for our main result.85

Theorem 2.1 (Cobeli and Zaharescu [1]) Let A = {a1, a2, . . . , ar } be a subset of
Fp and χ be a generator of the dual group of F

∗
p. Then, for any interval I of Fp, we

have ∣∣∣∣∣

∑

n∈I
χ(n + a1)χ

2(n + a2) · · · χr (n + ar )

∣∣∣∣∣
≤ 2r(log p)

√
p.

In this article, we prove the following theorems.86

Theorem 2.2 Let A and B be two disjoint subsets of Fp. Then87

∣∣∣∣∣
N (A,B) − |I|

(
k

p − 1

)|A| (
1 − k

p − 1

)|B|∣∣∣∣∣
≤ 2|B|+1+(|A|+|B|)ω(p−1)

88

(|A| + |B|) (log p)
√

p.89

We need the following technical corollary for the main result.90

Corollary 2.1 Let ε be a real number satisfying 0 < ε < 1/4 and R ≥ 1 be a natural
number. Let p be a large prime such that

k = p − 1

2
− φ(p − 1) ≥ p1− ε+1

4(R+1) .

Let A and B be two disjoint subsets of Fp such that R ≤ |A| + |B| < ε
3 log log p

and |A| = R. Then, for all interval I of Fp satisfying |I| ≥ p
3
4 +ε, we have

N (A,B) = |I|
(

k

p − 1

)|A| (
1 − k

p − 1

)|B| (
1 + O

(
1

pε/4

))
.

In Sect. 4, we deduce from Corollary 2.1 to conclude that the sequence of QNRNPs91

obeys a Poisson law, when (p − 1)/k is large enough.92

Before we state the next corollary, we first note the following result.93

Lemma 2.4 Let θ > 0 be a given real number, and let

N (x, θ) =
∣∣∣∣

{
p ≤ x : p − 1

k
≤ pθ

}∣∣∣∣
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6 R. Thangadurai and V. Kumar

be the number primes p ≤ x such that (p − 1)/k ≤ pθ. Then N (x, θ) = π(x) +94

o(π(x)) for all large enough x, where π(x) denotes the number of prime numbers95

p ≤ x.96

Proof First note that

p − 1

k
≤ pθ ⇐⇒ 1

pθ
≤ 1

2
− φ(p − 1)

p − 1
.

Take any prime p �= 2m + 1, and let q be the least odd prime divisor of p − 1. Then,

φ(p − 1) = (p − 1)
∏

r |(p−1)

(
1 − 1

r

)
≤ (p − 1)

1

2

(
1 − 1

q

)
,

which is equivalent to
φ(p − 1)

p − 1
≤ 1

2

(
1 − 1

q

)

and hence, we get
1

pθ
≤ 1

2
− 1

2

(
1 − 1

q

)
= 1

2q
.

Thus, the prime p satisfying the condition p − 1 ≤ kpθ implies that the least odd
prime q of p − 1 satisfies q ≤ (0.5)pθ. Let M(x, θ) denote the number of primes
p ≤ x such that every odd prime factor r of p − 1 satisfies r > (0.5)pθ. Then, by
sieve methods, it is known that

M(x, θ) ≤ π(xθ) + π(x)
∏

p≤xθ

(
1 − 1

p

)
≤θ

x

log2 x
,

for all large enough x , by Mertens’ formula. Therefore,

N (x, θ) ≥ π(x) − M(x, θ) − F(x) = π(x) + o(π(x)),

where F(x) denotes the number of Fermat primes p ≤ x which is at most97

log log x . �98

The following corollary is a generalization of one of the main results in [9], and99

by Lemma 2.4, the following result is true for almost all the prime numbers.100

Corollary 2.2 Let R ≥ 1 be any integer, and let A = {a1, a2, . . . , aR} be a subset101

of integers. Let ε > 0 be a given real number. Let p ≥ pε,R be a sufficiently large102

prime number satisfying
p − 1

k
≤ pε/(3R) for some computable constant pε,R which103

depends only on ε and R. Then, for any interval I ⊂ F
∗
p of cardinality |I| > p

1
2 +ε

104

contains an element n ∈ I such that n + a is a QNRNP for any a ∈ A.105
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Distribution of a Subset of Non-residues Modulo p 7

3 Proof of Theorem 2.2106

We prove the theorem in two cases as follows.107

Case 1. B = ∅.108

In this case, we have |B| = 0. Therefore, we need to estimate the quantity109

N (A,B) = N (A,∅) = N (A).110

Let |A| = s. By Lemma 2.1, we see that111

N (A) =
∑

n∈I

{
∏

a∈A

[
1

p − 1

p−2∑

�=0

β�(p − 1)χ�(n + a)

]}

112

=
(

1

p − 1

)|A|∑

n∈I

{
∏

a∈A

[

k +
p−2∑

�=1

β�(p − 1)χ�(n + a)

]}

113

= |I|
(

k

p − 1

)|A|
+ M

(p − 1)|A| ,114

where115

M =
∑

0≤l1,l2,...,ls≤p−2
(l1,...,ls )�=0

⎡

⎣
s∏

j=1

βl j (p − 1)

⎤

⎦
∑

n∈I

[
∏

a∈A
χl j (n + a)

]

.116

In order to finish the proof of this case, we have to estimate M . Now, we write117

M = D + C , where118

C =
∑

1≤l1,l2,...,ls≤p−2

⎡

⎣
s∏

j=1

βl j (p − 1)

⎤

⎦
∑

n∈I

⎡

⎣
s∏

j=1

χl j (n + a j )

⎤

⎦119

and D is the similar summation with at least one (but not all) of the l j ’s equal to120

zero. We further separate each sum over the set for which exactly one li is zero, then121

exactly two of the li ’s are 0, etc., up to when just one of the li ’s is nonzero.122

Now, we look at the sum corresponding to the case when exactly j of the �i ’s are
equal to zero. This means that s − j of the �i ’s are nonzero. The corresponding sum
is

D j = k j
∑

0<r1,...,rs− j ≤p−2

[
s− j∏

b=1

βrb(p − 1)

] [
∑

n∈I

(
s− j∏

b=1

χrb(n + ab)

)]

.

When we take the absolute value of this summand, we get123
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8 R. Thangadurai and V. Kumar

|D j | ≤ k j
∑

0<r1,...,rs− j ≤p−2

s− j∏

b=1

∣∣βrb(p − 1)
∣∣
∣∣∣∣∣

∑

n∈I

(
s− j∏

b=1

χrb(n + ab)

)∣∣∣∣∣
124

≤ k j

(
p−2∑

�=0

|β�(p − 1)|
)s− j ∣∣∣∣∣

∑

n∈I

(
s− j∏

b=1

χrb(n + ab)

)∣∣∣∣∣
.125

Thus, by Theorem 2.1 and Lemma 2.2, we get126

|D j | < k j
(
2ω(p−1)φ(p − 1)

)s− j (
2(s − j)(log p)

√
p
)

127

< 2sk j
(
2ω(p−1)φ(p − 1)

)s− j
(log p)

√
p.128

This inequality holds for all j = 1, 2, . . . , s − 2. When j = s − 1, we get

|Ds−1| ≤ ks−12ω(p−1)φ(p − 1)s(log p)
√

p.

The term C in M can also be estimated as above, and we get129

|C | ≤ (2ω(p−1)φ(p − 1)
)s

s(log p)
√

p.130

Adding up all the above estimates for |D j | and |C |, we get131

|M |
(p − 1)s

≤ 2s
log p

√
p

(p − 1)s

s−1∑

j=0

(
s

j

)
k j
(
2ω(p−1)φ(p − 1)

)s− j
132

< 2s log p
√

p

(
2ω(p−1) φ(p − 1)

p − 1
+ k

p − 1

)s

133

< 2s2sω(p−1)(log p)
√

p,134

where we have used the fact that 2ω(p−1) φ(p − 1)

p − 1
+ k

p − 1
< 2ω(p−1). Hence, we135

arrive at136

∣∣∣∣∣
N (A) − |I|

(
k

p − 1

)|A|∣∣∣∣∣
≤ 2|A|(log p)

√
p 2|A|ω(p−1),137

which satisfies the result when B = ∅.138

Case 2. B �= ∅.139

For every natural number n, we define

δ(n) := 1

p − 1

p−2∑

�=0

β�(p − 1)χ�(n).
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Distribution of a Subset of Non-residues Modulo p 9

Then, by Lemma 2.1, we get

δ(n) =
{

1, if n is a QNRNP,

0, otherwise.

Using this characteristic function δ(n) and a well-known formula,

∏

n∈B
(1 − xn) =

∑

C⊂B
(−1)|C|∏

n∈C
xn,

we shall write N (A,B) as follows:140

N (A,B) =
∑

n∈I

∏

a∈A
δ(n + a)

∏

b∈B
(1 − δ(n + b))141

=
∑

n∈I

∏

a∈A
δ(n + a)

∑

C⊂B
(−1)|C|∏

c∈C
δ(n + c)142

=
∑

C⊂B
(−1)|C|∑

n∈I

∏

d∈A∪C
δ(n + d)143

=
∑

C⊂B
(−1)|C|N (A ∪ C,∅).144

By Case 1, for any subset C ⊂ B, we get

N (A ∪ C,∅) = |I|
(

k

p − 1

)|A∪C|
+ θC2|A ∪ C|(log p)

√
p 2|A∪C|ω(p−1),

for some real number θC satisfying |θC| ≤ 1. Therefore,145

N (A,B) =
∑

C⊂B
(−1)|C||I|

(
k

p − 1

)|A∪C|
146

+
∑

C⊂B
(−1)|C|θC2|A ∪ C|(log p)

√
p 2|A∪C|ω(p−1).147

Since A ∩ B = ∅, we see that |A ∪ C| = |A| + |C| for any subset C of B. Therefore,148

we get149

∑

C⊂B
(−1)|C||I|

(
k

p − 1

)|A∪C|
= |I|

(
k

p − 1

)|A ∑

C⊂B
(−1)|C|

(
k

p − 1

)|C|
150

= |I|
(

k

p − 1

)|A| (
1 − k

p − 1

)|B|
.151
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10 R. Thangadurai and V. Kumar

Hence,152

∣∣∣∣∣
N (A, B) − |I|

(
k

p − 1

)|A| (
1 − k

p − 1

)|B|∣∣∣∣∣ ≤
∑

C⊂B
2|A ∪ C|(log p)

√
p 2|A∪C|ω(p−1)

153

≤ 2|B|+1|A ∪ B|(log p)
√

p 2|A∪B|ω(p−1).154

This proves this case and hence the theorem. �155

4 Proof of Corollary 2.1156

Let ε > 0 be a given real number and R ≥ 1 be a given natural number. Assume that
p is a large prime such that

k = p − 1

2
− φ(p − 1) ≥ p1− ε+1

4(R+1) .

Let I be a given interval in Fp of cardinality |I| ≥ p
3
4 +ε. Let A and B be two disjoint157

subsets of Fp such that |A| + |B| ≤ ε
3 log log p and |A| = R.158

Claim 1. We have

2|B|+1+(|A|+|B|)ω(p−1)(|A| + |B|)(log p)
√

p ≤ p
1
2 + ε

2 .

Note that by Lemma 2.3, we see that159

|B| + 1 + (|A + B|)ω(p − 1) ≤ ε

3

(
log log p + 3

ε
+ (log log p)(1.4)

log p

log log p

)
160

≤ (1.5)ε

3
log p = ε

2
log p.161

Therefore,162

2|B|+1+(|A|+|B|)ω(p−1)(|A| + |B|)(log p)
√

p ≤ p
(log 2)ε

2
ε

3
(log log p)(log p)

√
p ≤ p

1
2 + ε

2 ,163

as log 2 ≤ 0.7. This proves Claim 1.164

By Theorem 2.2 and Claim 1, we get165

N (A,B) = |I|
(

k

p − 1

)|A| (
1 − k

p − 1

)|B|
166

+ O

([
p

1
2 + ε

2

]/[

|I|
(

k

p − 1

)|A| (
1 − k

p − 1

)|B|])

.167

168
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Distribution of a Subset of Non-residues Modulo p 11

Therefore, we need to estimate the quantity

κ :=
(

p
1
2 + ε

2

)
/

[

|I|
(

k

p − 1

)|A| (
1 − k

p − 1

)|B|]

=
p

1
2 + ε

2

(
p−1

k

)|A|

|I|
(

1 − k
p−1

)|B| .

Since k = p−1
2 − φ(p − 1) and hence,

1 − k

p − 1
= 1

2
+ φ(p − 1)

p − 1
≥ 1

2
,

we see that (
1 − k

p − 1

)|B|
≥ 1

2(ε/3) log log p
= (log p)−(ε log 2)/3.

Since |I| ≥ p
3
4 +ε, we get169

κ ≤
p

1
2 + ε

2

(
p−1

k

)R
(log p)(ε(log 2))/3

p
3
4 +ε

170

≤
(

p−1
k

)R
(log p)(ε(log 2))/3

p
1
4 + ε

2

.171

Therefore, by the hypothesis that k ≥ p1−(ε+1)/(4(R+1)), we see that

κ ≤ 1

pε/4

and hence the corollary. �172

5 Proof of Corollary 2.2173

Given that R ≥ 1 is an integer and ε > 0 is a given real number. Let p be a prime174

number satisfying
p − 1

k
≤ pε/(3R). Let A = {a1, a2, . . . , aR} and B = ∅ be subsets175

of Fp in Theorem 2.2. Then |A| + |B| = R.176

Suppose I be any interval in F
∗
p satisfying |I| ≥ pε+ 1

2 . Therefore, by Theorem 2.2,
we have ∣∣∣∣∣

N (A) − |I|
(

k

p − 1

)R
∣∣∣∣∣
≤ 2Rω(p−1)+1 R(log p)

√
p.
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12 R. Thangadurai and V. Kumar

The inequality is equivalent to

∣∣∣∣
N (A)

|I|δR
− 1

∣∣∣∣ ≤ 2Rω(p−1)+1δ−R R
(log p)

√
p

|I| ,

where δ = k/(p − 1).177

In order to finish the proof of the corollary, we need to prove that N (A) �= 0. That178

is, it is enough to prove that the quantity

∣∣∣∣
N (A)

|I|δR
− 1

∣∣∣∣ < 1 and hence by the above179

inequality, it is enough to prove that 2Rω(p−1)+1δ−R R
(log p)

√
p

|I| < 1.180

Since, by Lemma 2.3, we have ω(p − 1) < 1.4 log p/ log log p, we see that

R2Rω(p−1)+1(log p) ≤ 22R(log p)/ log log p = p(R log 4)/ log log p;

and since R(log 4)/(log log p) → 0 as p → ∞, we get

R2Rω(p−1)+1(log p) ≤ p
ε
2 .

By hypothesis, we have (p − 1)/k ≤ pε/3R . By putting together both the estimates,
we see that

2Rω(p−1)+1δ−R R
(log p)

√
p

|I| ≤ p
ε
2 p

ε
3

√
p

|I| = p
1
2 + 5ε

6

|I| < 1,

as |I| ≥ p
1
2 +ε. Hence, we conclude that N (A) �= 0 which means that there exists an181

n ∈ I such that n + a is a QNRNP for any a ∈ A. �182

6 The Poisson Distribution of QNRNPs183

Let p be a prime number and k = p−1
2 − φ(p − 1) such that (p − 1)/k is reasonably

large enough. For a positive real number t , we define a random variable Xt which is
a function Xt : [1, p] → R and defined by

Xt (n) = |{ν : ν ∈ (n, n + t] and ν is a QNRNP}| .

Clearly, Xt (n) takes values 0, 1, 2, . . ..184

For a given interval I of Fp and a natural number � ≥ 1, we compute the prob-185

ability density function Pt (Xt = �) by restricting Xt to I. Note that if t < �, then,186

clearly, we see that Pt (Xt = �) = 0, as the interval (n, n + t] contains at most � − 1187

integers. Hence, we assume that t ≥ �.188
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Distribution of a Subset of Non-residues Modulo p 13

By definition, we can write Pt (Xt = �) as follows:

Pt (Xt = �) = 1

|I|
∑

C⊂{1,2,...,[t]}
|C|=�

N (C, C ′),

where C ′ is the set of integers from [1, t] which are not in C.189

Let ε be a given real number with 0 < ε < 1/4. We choose primes p satisfying

k = p − 1

2
− φ(p − 1) ≥ p1− ε+1

4(�+1) .

Take any interval I of Fp with |I| ≥ p3/4+ε and � ≤ t < ε
3 log log p. With this, we190

shall compute Pt (Xt = �). By Corollary 2.1, we have191

Pt (Xt = �) = 1

|I|
∑

C⊂{1,2,...,[t]}
|C|=�

|I|
(

k

p − 1

)|C| (
1 − k

p − 1

)|C′| (
1 + O

(
1

pε/4

))
192

=
∑

C⊂{1,2,...,[t]}
|C|=�

(
k

p − 1

)� (
1 − k

p − 1

)[t]−� (
1 + O

(
1

pε/4

))
193

=
(

k

p − 1

)� (
1 − k

p − 1

)[t]−�

⎛

⎜⎜⎜
⎝

∑

C⊂{1,2,...,[t]}
|C|=�

1

⎞

⎟⎟⎟
⎠

(
1 + O

(
1

pε/4

))
194

=
(

k

p − 1

)� (
1 − k

p − 1

)[t]−� ([t]
�

)(
1 + O

(
1

pε/4

))
195

= [t]([t] − 1) · · · ([t] − � + 1)

�!
(

k

p − 1

)�

(
1 − k

p−1

)[t]

(
1 − k

p−1

)�

(
1 + O

(
1

pε/4

))
.196

We write t = [t] + {t}, where [t] denotes the integral part of t and {t} denotes the197

fractional part of t . Since198

[t]([t] − 1) · · · ([t] − � + 1) = (t − {t})(t − {t} − 1) · · · (t − � + 1 − {t})199

= t (t − 1) . . . (t − � + 1)

�−1∏

i=0

(
1 − {t}

t − i

)
200

= t (t − 1) . . . (t − � + 1)

(
1 + O

(
1

t

))�

.201

Since � ≤ t , we see that
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14 R. Thangadurai and V. Kumar

(
1 +

(
1

t

))�

=
(

1 + O

(
�

t

))
,

and note that, when t → ∞, the above quantity is close to 1. Now, consider202

Pt (Xt = �) = t (t − 1) · · · (t − � + 1)(1 + O(�/t))

�!
(

k

p − 1

)�

(
1 − k

p−1

)t

(
1 − k

p−1

){t}+�

(
1 + O

(
1

pε/4

))
203

=
(

t
k

p − 1

)� 1

�!
(

1 − k

p − 1

)t (
1 + O

(
�

t

))(
1 − k

p − 1

)−{t}−� (
1 + O

(
1

pε/4

))
204

=
(

t
k

p − 1

)� 1

�! e
− tk

p−1

(
1 + O

(
�

t

))(
1 − k

p − 1

)−{t}−� (
1 + O

(
1

pε/4

))
.205

206

Now, we run through the sequence of primes p and the sequence of t , both tend to
infinity, such that λ = tk/(p − 1) remains constant. This is possible because k/(p −
1) tends to 0, as p → ∞ and also we have t → ∞. This shows that asymptotically
the probability density function Pt (Xt = �) of the random variable Xt obey Poisson
law with parameter λ; that is,AQ1

Pt (Xt = �) ∼ e−λ λ�

�! .
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