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Abstract. Let α be a non-zero algebraic number. Let K be the Galois closure

of Q(α) with Galois groupG and Q̄ be the algebraic closure of Q. In this article,
among the other results, we prove the following. If f ∈ Q̄[G] is a non-zero
element of the group ring Q̄[G] and α is a given algebraic number such that
f(αn) is a non-zero algebraic integer for infinitely many natural numbers n,
then α is an algebraic integer. This result generalises the result of Polya
[Rend. Circ Mat. Palermo, 40 (1915), pp. 1–16], Corvaja and Zannier [Acta
Math. 193 (2004), pp. 175–191] and Philippon and Rath [J. Number Theory
219 (2021), pp. 198–211]. We also prove the analogue of this result for rational
functions with algebraic coefficients. Inspired by a result of B. de Smit [J.
Number Theory 45 (1993), pp. 112–116], we prove a finite version of the Polya
type result for a binary recurrence sequences of non-zero algebraic numbers.
In order to prove these results, we apply the techniques of Corvaja and Zannier
along with the results of Kulkarni et al. [Trans. Amer. Math. Soc. 371 (2019),
pp. 3787–3804], which are applications of the Schmidt subspace theorem.

1. Introduction

We deal with the problem of determining whether a given algebraic number α
is an algebraic integer under certain conditions. In 1915, Polya had proved the
following statement: If TrQ(α)/Q(α

n) are integers for all natural numbers n, then α
is an algebraic integer. A proof of the above result, by elementary manipulations,
does not seem plausible owing to Newton’s identities [8]. In the proof provided by
Polya [11], he uses Fatou’s lemma by considering the generating function of the
trace operator (which is a rational function). Alternative proofs were given by H.
Lenstra and P. Ponomarev [4] independently using complementary modules.

The theorem of Polya doesn’t hold when we consider an infinite subset of natural
numbers. For example, for the algebraic number α=1/

√
2, we have TrQ(

√
2)/Q(1/

√
2)n

is always an integer whenever n ≡ 1 mod 2. Hence we need to assume ‘non-zero
integer’ condition when we consider the Polya’s question for an infinite subset of the
natural numbers. In [2], P. Corvaja and U. Zannier, using the subspace theorem,
proved the following. Suppose α is an algebraic number and let E be an infinite
subset of N. For each n ∈ E, suppose there exists a positive integer qn such that
limn∈E(log qn)/n = 0 and TrQ(α)/Q(qnα

n) ∈ Z. Then α is either the h-th root of a
rational number for some positive integer h or an algebraic integer. P. Philippon
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and P. Rath [9] proved a similar result by replacing the integer qn with a constant
which is a non-zero algebraic number.

A finite version of Polya’s question was refined further by B. de Smit [4] who
explicitly computed the constant C in terms of α: If TrQ(α)/Q(α

m) ∈ Z for 1 ≤
m ≤ C, then α is an algebraic integer. A finite constant is expected because we
need to evaluate only finitely many elementary symmetric functions at the Galois
conjugates of α to determine whether the given value α is an algebraic integer. The
constant C in B. de Smit’s result is optimal.

In this paper, we study two problems, namely,

(1) We consider the generalised power sums of the form λ1α
�
1+· · ·+λkα

�
k where

λi, αj are algebraic numbers and � ≥ 1 is any integer. If the power sum
is an algebraic integer for infinitely many �’s, then under what conditions,
we can conclude αj ’s are algebraic integers? As applications of this result
(Theorem 2.1), we consider the analogous situation over polynomials, group
rings, function fields and a linear combination of trace powers of algebraic
numbers.

(2) Some special cases wherein we can restrict � to a finite (effective) set for a
generalised power sum.

The main ideas of our work are coherent with those of [2], [4] and [9].

2. Our results

Given a set of non-zero algebraic numbers α1, . . . , αk, we partition them into
equivalence classes by the following equivalence relation:

(2.1) αi ∼ αj if and only if their ratio is a root of unity.

The algebraic numbers α1, . . . , αk are said to be non-degenerate if they have k-
equivalence classes. In general, by the equivalence relation in (2.1), a tuple
(α1, . . . , αk) induces a partition on the index set I = {1, . . . , k}, that is, I = ∪jIj ,
where for each j, the set {αr : r ∈ Ij} is an equivalence class under (2.1).

We denote the field of all algebraic numbers by Q and the ring of all algebraic
integers by Z, and we set ζh := e2πi/h for an integer h ≥ 2. Now we state one of
the main theorems as follows.

Theorem 2.1. Let L(X1, . . . , Xk) =

k∑
i=1

λiXi be a linear form with coefficients λi

in Q
×
. Let (α1, . . . , αk) ∈ Q̄×k be a given k-tuple of algebraic numbers such that

L(αn
1 , . . . , α

n
k ) ∈ Z,

for n in an infinite set S ⊂ N. Then for each subset Ij of I = {1, . . . , k} corre-
sponding to an equivalence class induced by (2.1), one of the following holds true:

(1) We have
∑
a∈Ij

λaα
n
a = 0 for all but finitely many values of n ∈ S.

(2) The numbers αi are algebraic integers for all i ∈ Ij.

Now we proceed to provide some consequences of Theorem 2.1. Theorem 2.2 and
Theorem 2.3 follow immediately from Theorem 2.1, and the conditions imposed on
these theorems are necessary to ensure that a given algebraic number is an algebraic
integer.
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2.1. Polynomial values. Here the linear form L(X1, . . . , Xk) can be replaced with
a polynomial P (X1, . . . , Xk) satisfying some mild hypotheses.

Theorem 2.2. Let P (X1, . . . , Xk) be a polynomial with algebraic coefficients and
assume that P (X1, 0, . . . , 0, 0) is a non-constant polynomial. Let α1, . . . , αk be mul-
tiplicatively independent non-zero algebraic numbers such that P (αn

1 , . . . , α
n
k ) ∈ Z

for infinitely many positive integers n. Then the number α1 is an algebraic integer.

Remark 2.1. Theorem 2.2 is no longer true if we remove the condition on
P (X1, 0, . . . , 0) is a non-constant polynomial. For instance, let P (X,Y ) = XY + 1
and fix a prime p 
= 2. Choose α1 = 1/p and α2 = 2p and note that P (αn

1 , α
n
2 ) =

2n + 1 ∈ Z for all natural numbers n.

2.2. Group rings. Let α be a non-zero algebraic number, Kα be the Galois closure
of Q(α) and Gα = Gal(Kα/Q) be the Galois group. We identify the index set I of
Theorem 2.1 as the elements of Gα, for convenience, and consider the group ring
Q̄[Gα].

Theorem 2.3. Let f ∈ Q[Gα] be a non-zero element such that f(αn) ∈ Z\{0} for
n in an infinite subset S ⊂ N. Then α is an algebraic integer.

Remark 2.2. In particular, Theorem 2.3 proves the following: If σ(αn) − αn is
a non-zero algebraic integer for infinitely many n, then α is an algebraic integer.
However, the same conclusion is not possible by applying the trace operator because
TrK/Q(σ(α

n)− αn) = 0. One notes that this fact can be obtained by applying the
number field version of Ridout’s theorem, see for instance, Corollary 1.2 in Chapter
7 of S. Lang [7] (or Theorem D.2.1 in [5]).

2.3. Action under the trace map. Let α be a non-zero algebraic number of
degree d and let α = α1, . . . , αd be all the Galois conjugates of α. If P (X) ∈ Q[X]
is a non-zero polynomial of α, then

TrK/Q(P (αn)) = Q(αn
1 , . . . , α

n
d ),

whereQ(X1, . . . , Xd) = P (X1)+· · ·+P (Xd). Though the polynomialQ satisfies the
hypothesis of Theorem 2.2, the numbers α1, α2, . . . , αd need not be multiplicatively
independent. However, we have Theorem 2.4 for the trace operator.

Theorem 2.4. Let α be a non-zero algebraic number and let P (X) = λDXD+· · ·+
λ0 ∈ Q̄[X] be a non-constant polynomial of degree D and let L = Q(λ0, . . . , λD, α).
If TrL/Q(P (αn)) ∈ Z for each n in an infinite set S of natural numbers, then either

α is an algebraic integer or for each i = 1, 2, . . . , D, we have TrL/Q(λiα
in) = 0 for

all but finitely many n ∈ S.

When we consider a multivariable generalisation of Theorem 2.4, we may have
that the trace operator vanishes for a subsum for trivial reasons. For simplicity, we
consider a linear form in several variables.

Theorem 2.5. Suppose α1, . . . , αk, λ1, . . . λk be distinct non-zero algebraic num-
bers. Let L = Q(αi, λi | 1 ≤ i ≤ k), K be its Galois closure and h be the order of
the torsion subgroup of K× over Q. Suppose TrL/Q(λ1α

n
1 + · · ·+ λkα

n
k ) ∈ Z for n

in an infinite subset S ⊂ N. If α1 is not an algebraic integer, then there exists an
integer a ∈ {0, . . . , h− 1} and a subset I of {1, . . . , k} containing 1 such that

TrL/Q

(∑
i∈I

λiα
a
i

)
= 0,
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where for each i ∈ I, there exists σi ∈ Gal(K/Q), the Galois group of K, such that
σi(αi)/α1 is a root of unity.

We have the following interesting corollary as a consequence of this result.

Corollary 2.1. Let α1, . . . , αk, λ1, . . . , λk be non-zero algebraic numbers. Let L =
Q(αi, λi | 1 ≤ i ≤ k), K be its Galois closure and h be the order of the torsion
subgroup of the multiplicative group K×. Suppose that no subsum of λ1α

a
1 + · · · +

λkα
a
k vanishes, under the trace map, for each a ∈ {0, 1, . . . , h−1}. If TrL/Q(λ1α

n
1 +

· · ·+λkα
n
k ) ∈ Z for infinitely many natural numbers n, then each αi is an algebraic

integer for all i = 1, . . . , k.

Corollary 2.1 can be considered as a multidimensional generalisation of a result
of P. Philippon and P. Rath in [9].

2.4. Determining the nature of rational functions. We consider a function
field (of characteristic 0) analogue of Theorem 2.1 in the simplest setting after
imposing some additional restrictions.

Theorem 2.6. Let f1(X), . . . , fk(X) be non-constant rational functions with alge-
braic coefficients and λ1, . . . , λk be non-zero algebraic numbers. Assume that the
ratio fi(X)/fj(X) is not a constant function for each i 
= j. If

(2.2)

k∑
i=1

λi(fi(X))n ∈ Z[X]

for n in an infinite subset S ⊂ N, then each fi(X) ∈ Z[X].

It might be possible to show each of the functions fi(X) are polynomial functions
without appealing to the subspace theorem. However, the approach here is to
deduce the nature of rational function via its specialisations.

2.5. Determining algebraic integers in finite iteration. In the work of B.
de Smit [4], a finite bound on � in TrQ(α)/Q(α

�) was given in order to determine
whether α is an algebraic integer. We provide the following generalisations:

Theorem 2.7. Let α1 be a non-zero algebraic number and α2, . . . , αk be all the
other Galois conjugates of α1 for some integer k ≥ 2. Let K be the Galois closure
of Q(α1) and [K : Q] = d ≥ k. For any integer b1, . . . , bk (not necessarily distinct)

such that b1 + · · · + bk = n 
= 0, if TrK/Q(b1α
j
1 + · · · + bkα

j
k) ∈ Z for all j =

1, 2, . . . , d + d[log2(nd)] + 1, then α1 is an algebraic integer and so is αj for each
j ≥ 2.

We now look at a multidimensional analogue of B. de Smit’s result more gen-
erally, not just for trace operators, but for a given linear recurrence sequence.

Let αi ∈ Q
×

be distinct algebraic numbers, λi ∈ Q
×

for all 1 ≤ i ≤ k, K =
Q(α1, . . . , αk, λ1, . . . λk) and OK be its ring of integers. We ask Question 1:

Question 1. Does there exist a constant C (depending on αi and λi) such that

λ1α
�
1 + · · ·+ λkα

�
k ∈ OK for all 1 ≤ � ≤ C =⇒ αj ∈ OK for all 1 ≤ j ≤ k?

When k = 1, one can answer Question 1 positively with C = 1 + maxp |vp(λ1)|
where p runs through the non-zero prime ideals in OK and vp denotes the valuation
at p. Here, we answer this question when k = 2 and highlight some difficulties in
generalising this proof for arbitrary k in Remark 5.1.
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Theorem 2.8. Let α1, α2, λ1, λ2 be given non-zero algebraic numbers. Let K =
Q(λ1, λ2, α1, α2) and let

C = 2 +

⌈
1

2
max
P

∣∣vP(λ1λ2(α1 − α2)
2)
∣∣⌉+max

P
|vP(λ1λ2)| ,

where P runs through the non-zero prime ideals in OK . If

λ1α
�
1 + λ2α

�
2 ∈ OK for all 1 ≤ � ≤ C,

then α1, α2 ∈ OK .

3. Preliminaries

In this section, we state the propositions/theorems required for the proof of
our theorems. We also need some results which are applications of the Schmidt
Subspace Theorem, formulated by Evertse and Schlickewei. For a reference, see
[1, Chapter 7], [12, Chapter V, Theorem 1D′], and [13, Page 16, Theorem II.2].

Let K be a number field which is a Galois extension over Q. Let MK be the set
of all places on K and M∞ be the set of all archimedean places on K. For each
place w ∈ MK , let Kw denote the completion of the number field K with respect to
w and d(w) = [Kw : Qv ], where v is the restriction of w to Q. For every w ∈ MK

whose restriction on Q is v and α ∈ K, we define the normalized absolute value
| · |w as follows:

(3.1) |α|w := |NormKw/Qv
(α)|

1
[K:Q]
v .

Indeed if w ∈ M∞, then there exists an automorphism σ ∈ Gal(K/Q) of K such
that for all x ∈ K,

|x|w = |σ(x)|d(K)/[K:Q],

where d(K) = 1 if K ⊂ R and d(K) = 2 otherwise. Note that since K is Galois
over Q, the embeddings are either totally real or totally complex, and hence the
function d(K) is constant. Thus, under the definition (3.1), the product formula∏
ω∈MK

|x|ω = 1 holds true for any x ∈ K×. For a non-zero vector x = (x1, . . . , xn) ∈

Kn, the projective height, H(x), is defined by

H(x) =
∏

ω∈MK

max{|x1|ω, . . . , |xn|ω}.

We require the following results from [6].

Proposition 3.1 (A. Kulkarni, N. Mavraki and K. D. Nguyen [6]). Let α1, . . . , αk

be non-degenerate non-zero algebraic numbers and let λ1, . . . , λk be non-zero alge-
braic numbers. Then there are at most finitely many natural numbers n satisfying

λ1α
n
1 + · · ·+ λkα

n
k = 0.

Theorem 3.1 (A. Kulkarni, N. Mavraki and K. D. Nguyen [6]). Let K be a number
field which is Galois over Q and S be a finite set of places, containing all the
archimedean places. Let λ1, . . . , λk be non-zero elements of K. Let ε > 0 be a
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positive real number and ω ∈ S be a distinguished place. Let E be the set of all
(u1, . . . , uk) ∈ (O×

S )
k which satisfy the inequality

(3.2) 0 <

∣∣∣∣∣∣
k∑

j=1

λjuj

∣∣∣∣∣∣
ω

≤ max{|u1|ω, . . . , |uk|ω}
H(u1, . . . , uk, 1)ε

,

where O×
S is the ring of S-units in K. If E is an infinite set, then there exist

c1, . . . , ck ∈ K, not all zero, such that

c1u1 + · · ·+ ckuk = 0

holds true for infinitely many elements (u1, . . . , uk) of E.

We prove Proposition 3.2 regarding the elements of Galois group fixing the equiv-
alence class of a non-zero algebraic element α (given by (2.1)). This is of indepen-
dent interest.

Proposition 3.2. Let α be a non-zero algebraic number, and K be any Galois
extension of Q containing α with its Galois group G = Gal(K/Q). Let

H = {σ ∈ G : σ(α) ∼ α}

be a subset of G. Then the following statements are true;

(1) H is a subgroup of G.
(2) For any given τ ∈ G, we have {σ ∈ G | σ(τ (α)) ∼ τ (α)} = τHτ−1.

Proof. If σa ∈ H then we have σa(α) = ζwa

h α for some integer wa. Since G permutes
the roots of unity, so does H. This shows that H is closed under inversion and
composition of automorphisms in G. Hence H is a subgroup of G. This proves (1).

Let σ ∈ H be any element. Then we have

σ(α) ∼ α ⇔ τ (σ(α)) ∼ τ (α) ⇔ (τστ−1)(τα) ∼ τ (α),

proving the second statement. �

We shall state the following basic and well-known lemma which roughly says
‘integrality’ is a local phenomenon.

Lemma 3.1. Let α ∈ Q̄ be an algebraic number. Then α is an algebraic integer if
and only if α is integral over Zp for every prime number p where Zp is the ring of
p-adic integers.

Lemma 3.2 is also basic and well-known and hence we omit the proof here.

Lemma 3.2. Let K be a finite extension over Qp of degree d where Qp is the field
of p-adic numbers. Let α ∈ K be an element such that α 
∈ OK , the local ring of
K. Then β := α−1 ∈ OK . Furthermore, if the characteristic polynomial of β is

fK|Qp
(x) = adx

d + ad−1x
d−1 + · · ·+ a1x+ a0 ∈ Zp[x],

then ad = 1 and ai ∈ pZp for all i = 0, 1, . . . , d−1 where pZp is the unique maximal
ideal of Zp.

We need Lemma 3.3 in the proof of Theorem 2.7.
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Lemma 3.3. Let p be a given prime number and let K be a finite Galois extension
over Qp of degree d. Let α ∈ K be an element such that α 
∈ OK and β be a
Galois conjugate of α. Let b1 and b2 be given p-adic integers such that b1 + b2 
= 0.
Then for each integer � ≥ 0, there exists an integer i ∈ {1, 2, . . . , d} such that
b1α

�+i + b2β
�+i 
= 0.

Proof. Since α 
∈ OK , by Lemma 3.2, it is clear that α−1 ∈ OK and let f(x) =
xd + ad−1x

d−1 + · · · + a1x + a0 ∈ Zp[x] be the characteristic polynomial of α−1.
Since β is a Galois conjugate of α, it is clear that f(α−1) = 0 = f(β−1). We see
that for every integer m ≥ 0, we have

αm = −ad−1α
m+1 − · · · − a0α

m+d and βm = −ad−1β
m+1 − · · · − a0β

m+d.

Therefore, we get

(3.3) b1α
m + b2β

m = −ad−1(b1α
m+1 + b2β

m+1)− · · · − a0(b1α
m+d + b2β

m+d).

Now we prove the assertion by induction on �.
We put m = 0 in (3.3), we get

0 
= b1 + b2 = −ad−1(b1α
1 + b2β

1)− · · · − a0(b1α
d + b2β

d)

which implies the assertion when � = 0. Assume the assertion is true for some
integer � > 0. That is, there exists an integer i ∈ {1, 2, . . . , d} such that b1α

�+i +
b2β

�+i 
= 0. If i ≥ 2, then � + i = � + 1 + j for some integer j ∈ {1, 2, . . . , d} and
then we are done. Hence we assume that i = 1. That is, b1α

�+1 + b2β
�+1 
= 0.

Now, put m = � + 1 in (3.3) to get the assertion in this case as well. Hence the
lemma. �

We conclude this section by discussing a proof of Fatou’s Lemma. This was
proved by Pisot [10] for number fields and the proof was adapted based on Fatou’s
work [3]. We provide a slightly different proof along the lines mentioned in B. de
Smit [4]. Before proceeding further, for a non-zero algebraic number α, we define
the denominator of α (denoted by den(α)) to be the smallest positive integer n such
that nα is an algebraic integer.

Proposition 3.3 (Fatou’s lemma). Let K be a number field and f(X) ∈ K(X) ∩
OK [[X]] such that f(X) = g(X)/h(X) where g(X), h(X) ∈ K[X] are coprime in
K[X] and h(0) = 1. Then g(X), h(X) ∈ OK [X].

Proof. Given that f(X) = g(X)/h(X) where g(X), h(X) ∈ K[x] are coprime and
h(0) = 1. Then there exist two polynomials r(X), s(X) ∈ OK [X] such that
r(X)g(X) + s(X)h(X) = c for some non-zero constant c ∈ OK . Therefore, we
have

(3.4)
c

h(X)
∈ OK [[X]].

Now let h(X) =

k∏
i=1

(1− aiX)ci in Q[X] for some integers ci ≥ 1 and some distinct

ai ∈ Q. For each i with 1 ≤ i ≤ k, multiplying (3.4) by the factor⎡⎢⎢⎣ k∏
j=1
j �=i

den(aj)
cj (1− ajX)cj

⎤⎥⎥⎦ [
den(ai)

ci−1(1− aiX)ci−1
]
,
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we define a new formal power series f̃i(X) := c′(1− aiX)−1 for some c′ depending
on den(aj) and cj for all 1 ≤ j ≤ k. Since we are multiplying by a polynomial

whose coefficients are algebraic integers, we get f̃i(X) ∈ OL[[X]] for some finite
extension L over K in which h(X) splits completely. Therefore for any non-zero
prime ideal P in OL, we have

vP(c′ani ) ≥ 0 for all n =⇒ vP(ai) ≥ 0

and consequently, we get ai is an algebraic integer. Therefore h(X) ∈ K[X] ∩
OL[X] = OK [X] and hence g(X) = f(X)h(X) ∈ OK [X] as both f(X), h(X) take
values in OK . �

4. Proofs of Theorems 2.1 to 2.6

Proof of Theorem 2.1. Let K = Q(α1, . . . , αk) be a number field and h be the order

of the torsion subgroup of K×. We partition {α1, . . . , αk} =
d⋃

l=1

{αa : a ∈ Il} by the

equivalence relation in (2.1). For each index set Il, let βl be a representative of the
corresponding equivalence class {αa : a ∈ Il}, and for a ∈ Il, let αa = βlζ

ωa,l

h for
some integer ωa,l. The numbers β1, . . . , βd are representatives (elements) of disjoint
equivalence classes and hence the tuple (β1, . . . , βd) is non-degenerate.

Let l be a fixed natural number with 1 ≤ l ≤ d and assume that assertion (1)

is not true for Il. Then, for infinitely many n ∈ S, the sum
∑
a∈Il

λaα
n
a 
= 0. In

particular, there exists an infinite subset Sm := {n ∈ S : n ≡ m mod h} for

some m ∈ {0, 1, . . . , h − 1} such that
∑
a∈Il

λaα
n
a 
= 0 for each n ∈ Sm. Therefore,

for each n ∈ Sm, we have

L(αn
1 , . . . , α

n
k ) =

k∑
i=1

λiα
n
i

=
d∑

r=1

∑
a∈Ir

λaα
n
a

=
d∑

r=1

∑
a∈Ir

λaζ
nωa,r

h βn
r =

d∑
r=1

κr,mβn
r =: Lm(βn

1 , . . . , β
n
d ),

where κr,m :=
∑
a∈Ir

λaζ
mωa,r

h , as n ≡ m mod h. Since κl,mβn
l =

∑
a∈Il

λaα
n
a , we have

κl,m 
= 0. Furthermore, since (β1, . . . , βd) is a non-degenerate tuple, by Proposition

3.1, L(βn
1 , . . . , β

n
d ) ∈ Z\{0} for all but finitely many values of n ∈ Sm. We remove

the finite numbers n ∈ Sm for which L(βn
1 , . . . , β

n
d ) = 0.

We proceed to prove that βl is an algebraic integer via contradiction.
Let S be a suitable finite subset ofMK containing all the archimedean places such

that βj is an S-unit for each j = 1, 2, . . . , d. Assume that βl is not an algebraic in-
teger. Then there exists a finite place ω ∈ S such that |βl|ω > 1. Choose ε > 0 such

that ε <
log |βl|ω

logH(β1, . . . , βd, 1)
. For all n ∈ Sm, we have |βl|nωH(βn

1 , . . . , β
n
d , 1)

−ε > 1
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because by the choice of ε and the height inequality

H(x1y1 : . . . , xdyd : 1) ≤ H(x1 : . . . , xd : 1)H(y1 : . . . , yd : 1).

Since Sm is an infinite set, Theorem 3.1 (applied to the linear form Lm consisting
of the subtuple (. . . , βl, . . . ) for which κl,m 
= 0) asserts that

d∑
i=1

biβ
n
i = 0

holds true for infinitely many natural numbers n ∈ Sm, where bi ∈ K and not
all zero. This is a contradiction to Proposition 3.1. Therefore βl is an algebraic
integer. �
Proof of Theorem 2.2. Given polynomial P (X1, . . . , Xk), we write a typical mono-

mial in P as
k∏

j=1

X
bj
j = Xi where i = (b1, . . . , bk). Also, we write the coefficient of

the monomial Xi in P as ai. Let

I = {(b1, . . . , bk) : i = (b1, . . . , bk) and Xi appears in P}
be the index set.

Now, consider the linear form L((Yi)i∈I) =
∑
i∈I

aiYi. Therefore, by setting αi :=

k∏
j=1

α
bj
j for each i = (b1, . . . , bk) ∈ I, we see that P (α1, . . . , αk) = L((αi)i∈I).

By hypothesis, α1, . . . , αk are multiplicatively independent. Therefore the se-
quence (αn

1 , . . . , α
n
k ) is Zariski-dense on the k-dimensional space Ak; same holds for

every infinite subsequence. In particular, P (αn
1 , . . . , α

n
k ) cannot vanish infinitely

often. Thus, it follows that P (αn
1 , . . . , α

n
k ) ∈ Z̄\{0} for infinitely many natural

number n (by hypothesis).

By hypothesis, since P (X1, 0, . . . , 0) is not a constant polynomial, we let

P (X1, 0 . . . , 0) =
d∑

i=0

ciX
i
1, with cd 
= 0 and therefore (d, 0, . . . , 0) ∈ I. Let I1

be an equivalence class induced by (2.1) corresponding to a subset, say, I1 of I
such that (d, 0, . . . , 0) ∈ I1 (or equivalently, αd

1 ∈ I1). Since α1, . . . , αk are multi-
plicatively independent, we get I1 ⊆ {(c, 0, . . . , 0) | 0 ≤ c ≤ d}. Then we have the
following cases to consider:

(1) If (c, 0, . . . , 0) ∈ I1 for some non-negative integer c < d, then αd
1 ∼ αc

1, and

therefore αd−c
1 is a root of unity. This implies that α1 is a root of unity.

(2) If I1 = {(d, 0, . . . , 0)}, then by Theorem 2.1, αd
1 is an algebraic integer.

Therefore, α1 is an algebraic integer.

In both cases, we are done. �

Proof of Theorem 2.3. Let f =
∑

σ∈Gα

λσσ be a non-zero element of Q[Gα]. Then

we have
f(αn) =

∑
σ∈Gα

λσσ(α
n) =

∑
σ∈Gα

λσσ(α)
n.
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Therefore, by letting X = (Xσ)σ∈Gα
, the linear form L(X) =

∑
σ∈Gα

λσXσ and

α := (σ(α))σ∈Gα
, we note that L(αn) = f(αn). Hence by hypothesis, we have

L(αn) ∈ Z\{0} for all n ∈ S.

The equivalence relation in (2.1), induces a partition on the index set Gα, that
is, Gα = ∪d

j=1Ij . If possible, we suppose α (and therefore all the Galois conjugates
of α) is not an algebraic integer. By Theorem 2.1, for every equivalence class Ij we
have ∑

σ∈Ij

λσσ(α)
n = 0 for all but finitely many n ∈ S.

Therefore, for all but finitely many values of n ∈ S, we have

f(αn) =

d∑
j=1

∑
σ∈Ij

λσσ(α)
n = 0,

a contradiction as f(αn) ∈ Z\{0} for all n ∈ S and S is an infinite set. �

For the proof of Theorems 2.4 and 2.5, the index set, I × G, will be a finite
subset of N×Gal(K/Q) for an appropriate Galois extension K/Q. Then we set the
linear form as

L(X) := L((Xi,σ)(i,σ)∈I×G) =
∑

(i,σ)∈I×G

σ(λi)Xi,σ.

Proof of Theorem 2.4. First, we can assume that α is not a root of unity (for oth-
erwise, we are done). Since TrL/Q = TrF/QTrL/F for an intermediate field F of L,
we further reduce our computations to the field F = Q(α). That is, we can assume
that λi ∈ F for each i.

Let K be the Galois closure of F and its Galois group G = Gal(K/Q). We set
the index set I × G = {(k, σ) | λk 
= 0, 1 ≤ k ≤ D, σ ∈ G}. For every algebraic
number γ, we define the tuple γ := (σ(γ)k)(k,σ)∈I×G. Therefore, by hypothesis,

we have L(αn) = TrF/Q(P (αn)) =

D∑
i=0

TrF/Q(λiα
in) ∈ Z for each n in an infinite

subset S ⊆ N.
If α is not an algebraic integer (and so are the conjugates of α and their pow-

ers), then by expanding the trace operator and by Theorem 2.1, we get for every
equivalence class and the corresponding index set Ij ×H ⊂ I ×G for some subset
H ⊂ G such that

(4.1)
∑
i∈Ij

biα
n
i = 0,

for all but finitely many n where bi denotes the conjugates of λl for some finite
collection and αi denotes some conjugate of αl for some l ≤ D appropriately.

Note that for any (i, σ), (k, τ ) ∈ Ij ×H, we see that σ(αi) ∼ τ (αk) which implies
that αi ∼ δ(αk) for some δ ∈ G. Now, we claim that if αl ∼ σ(α)k for some
1 ≤ l, k ≤ D and for some σ ∈ G, then l = k. In order to prove this claim, we use
the properties of logarithmic Weil height h(x) = log |H(x)|. As l and k are positive
integers, since

lh(α) = h(αl) = h(ζσ(α)k) = h(αk) = kh(α)

(where ζ is a root of unity), we get l = k as h(α) > 0, which proves the claim.
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Suppose λlα
l is one of the terms in the above summand. Then by the claim,

(4.1) becomes ∑
σ∈H

σ(λlα
ln) = 0

for all but finitely many n. Applying the trace operator on both sides, we get
|H|TrF/Q(λlα

ln) = 0 for infinitely many n. Since |H| ≥ 1, we get the assertion. �

Proof of Theorem 2.5. Let K be the Galois closure of L and its Galois group G =
Gal(K/Q). We write the index set I×G = {(i, σ) | 1 ≤ i ≤ k, σ ∈ G}. For the tuple
αn := (σ(αi)

n)σ∈G,1≤i≤k, we note that L(αn) = TrL/Q(λ1α
n
1 + · · ·+ λkα

n
k ) ∈ Z for

n in an infinite subset S of N.
Since α1 is not an algebraic integer, by hypothesis, by applying Theorem 2.1

to the linear form L(αn), there exists an equivalence class and the corresponding
index set I1 containing (1, σ1) (σ1 denotes the identity map) such that

(4.2)
∑

(i,σj)∈I1

σj(λi)σj(αi)
n = 0 = αn

1

⎛⎝ ∑
(i,σj)∈I1

σj(λi)ζh
(wij−w11)n

⎞⎠
for all but finitely many n ∈ S.

We first prove that I1 = P ×H for some subgroup H ⊆ G and P = {i : (i, σ) ∈
I1} ⊆ {1, . . . , k}.

Note that if i ∈ P, then there exists σ ∈ G such that (i, σ) ∈ I1. Therefore, for
each i ∈ P, we choose τi ∈ G such that α1 ∼ τi(αi) and hence let Hi := {σ ∈ G |
τi(αi) ∼ σ(τi(αi))}. Then Hi is a subgroup of G by Proposition 3.2.

Note that Hi = Hj for any i, j ∈ P. For, if σ ∈ Hi, then α1 ∼ τi(αi) ∼ σ(τi(αi)).
Since (i, τi), (i, τj) ∈ I1, we see that τi(αi) ∼ τj(αj). Therefore, by acting σ on this
equivalence, we get

τj(αj) ∼ τi(αi) ∼ σ(τi(αi)) ∼ σ(τj(αj))

and hence Hi ⊆ Hj . Similarly, we get Hj ⊆ Hi. Since (1, σ1) ∈ H1, by taking
H = H1, we get I1 = P ×H.

We now rewrite (4.2) as∑
i∈P

∑
σ∈H

σ(τi(λi))σ(τi(α
n
i )) =

∑
σ∈H

σ

(∑
i∈P

τi (λiα
n
i )

)
= 0

for all but finitely many values of n ∈ S. In particular, there exists a non-negative
integer a < h such that there are infinitely many n ≡ a mod h with n ∈ S. For
any such n ≡ a mod h in S, by combining (4.2) and the above equality, we get∑

σ∈H

∑
i∈P

σ [τi(λi)(τi(αi)
a] = 0.

Since TrK/Q is invariant under the Galois action, by applying the trace operator
TrK/Q, we get ∑

i∈P
TrK/Q(λiα

a
i ) = 0.

Since λi, αi ∈ L, this proves the theorem. �
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Proof of Theorem 2.6. Let K be the number field that is obtained by adjoining all

the zeros and poles of fi(X)’s and λj ’s with Q. For each i, we write fi(X) =
pi(X)

qi(X)
for some coprime polynomials pi(X), qi(X) ∈ OK [X]. Let h be the order of the
torsion subgroup of K×.

Since (pi(X), qi(X)) = 1 in K[X] for all i, there exist polynomials ri(X), si(X) ∈
OK [X] and βi 
= 0 ∈ OK such that

ri(X)pi(X) + si(X)qi(X) = βi,

and hence ri(X)fi(X)+si(X) =
βi

qi(X)
. In order to prove fi(X) ∈ OK [X], first, we

prove that qi(X) is a constant polynomial in K[X] for each i. To do this, we need
to understand the conjugate polynomials of qi(X). We shall define the following.

For any number field L, we let

VL:=OL\{Zeroes of pi(X), qi(X), (qj(X)pi(X))h−(qi(X)pj(X))h for 1≤ i<j≤k}.
Note that this set is the complement of a finite set because fi(X)/fj(X) is not
constant, and also we are removing the solutions of the equation fi(X)/fj(X) = ζah
for every i 
= j and for some integer a.

By the definition of VK , we see that for any γ ∈ VK (or VL), the tuple
(f1(γ), . . . , fk(γ)) is a non-degenerate tuple. Therefore, by Theorem 2.1, fi(γ) ∈
OK (or OL) for all i. Hence, the value βi/qi(γ) ∈ OK for each γ ∈ VK . Note also
that VK contains all but finitely many integers in it.

If possible, for some i, we suppose qi(X) is a non-constant polynomial. Let L
be the Galois closure of Q(βi, coefficients of qi(X)). Then the polynomial Qi(X) =∏
σ∈Gal(L(X)/Q(X))

σ(qi(X)) is also a non-constant polynomial in Q[X]. Consider VL

and conclude that βi/qi(γ) ∈ OL for each γ ∈ VL. Therefore, NL/Q(βi/qi(γ)) ∈ Z

for every γ ∈ VL. Note that for all but finitely many n ∈ Z lie in VL and hence we
have NL/Q(βi/qi(n)) = NL/Q(βi)/Qi(n) ∈ Z. Since |Qi(n)| → ∞ as |n| → ∞, we
obtain |NL/Q(βi)/Qi(n)| → 0 as n → ∞. However, this is a sequence of integers
and therefore we conclude that NL/Q(βi) = 0. This implies βi = 0, which is a
contradiction. Hence qi(X) must be constant and hence fi(X) ∈ K[X] for each i.

We now proceed to show that fi(X) ∈ OK [X]. Let fi(X) =
pi(X)

γi
=

1

γi

d∑
j=0

bjX
j

for some γi, bj ∈ OK . Suppose there exists a prime ideal P in OK such that
vP(bj/γi) < 0 for some j. We choose a number field L containing K having a prime
ideal Q in OL lying above P such that the ramification index (say e) is greater than
2d. Note that such L can be chosen by adjoining the appropriate root of unity to
K to get the desired. Therefore, for any δ ∈ K×, we have vQ(δ) = evP(δ). By the
choice of e, we conclude that

(4.3) e min
0≤r≤d

vP(br/γi) + d < 0.

Now since VL is the complement of a finite set, we choose α ∈ VL such that

vQ(α) = 1. Then vQ(fi(α)) = min
r

vQ

(
br
γi

+ r

)
because for any two distinct non-

negative numbers r, s ≤ d, due to (4.3), we have, vQ

(
bsα

s

γi

)

= vQ

(
brα

r

γi

)
, as
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e > 2d (If they are equal, we take absolute values and consider their difference to
get a contradiction). Therefore,

vQ(fi(α)) ≤ min
r

e

[
vP

(
br
γi

)]
+ d < 0,

a contradiction to the fact that fi(α) ∈ OL as α ∈ VL. �

5. Proofs of Theorems 2.7 and 2.8

Proof of Theorem 2.7. By Lemma 3.1, it is enough to prove the assertion for Qp

for every prime number p.
Let p be a given prime number. Assume that α1 is not integral over Zp and K be

the Galois closure of Qp(α1). All the other Galois conjugates of α1 are α2, . . . , αk

for some integer k. It is also enough to prove the case when b3 = b4 = · · · = bk = 0
and the proof for the general case follows verbatim.

Assume that α1 is not integral over Zp (and so is α2). For simplicity, we write
α1 = α and α2 = β. Then α−1 and β−1 are integral over Zp and let the charac-
teristic polynomial fK|Qp

(x) := f(x) of α−1 satisfies the assertion in Lemma 3.2.

Since β is a Galois conjugate of α, we see that the characteristic polynomial of β−1

is f(x) itself. Write the unique maximal ideal pZp of Zp by P.

If f(x) = xd + ad−1x
d−1 + · · ·+ a0, then f(α−1) = 0 and f(β−1) = 0. Hence we

get

(5.1) a0 + a1α
−1 + · · ·+ ad−1α

−d+1 + α−d = 0 = a0 + a1β
−1 + · · ·+ ad−1β

−d.

Then, for any integer � ≥ 0, multiplying by αd+� both sides of (5.1), we get

(5.2) α� = −ad−1α
�+1 − · · · − a0α

d+� with ai ∈ P

and

(5.3) β� = −ad−1β
�+1 − · · · − a0β

d+� with ai ∈ P

by Lemma 3.2. Now, for any integer � ≥ 0, let M� be a Zp-submodule of K spanned
by b1α

�+1 + b2β
�+1, . . ., b1α

�+d + b2β
�+d. By Lemma 3.3, it is clear that M� is a

non-zero Zp-submodule of K. Hence, by (5.2) and (5.3), we have

(5.4) b1α
� + b2β

� ∈ PM� for any integer � ≥ 0.

Note that for any non-negative integers �1 and �2, we have

(5.5) M�1 ⊂ M�2 whenever �1 < �2.

It is enough to prove that for �1 = �, �2 = �+1, we have b1α
�+1+b2β

�+1 ∈ M�2 (and
then inductively we can get the general assertion). Since f(α−1) = 0 = f(β−1),
multiplying by α�+1+d on both sides, similarly, by β�+1+d, we get b1α

�+1+b2β
�+1 ∈

M�2 , as desired.
Now we claim that for any integer � ≥ 0 and any integer m ≥ 0, we have

(5.6) b1α
� + b2β

� ∈ Pm+1M�+dm.

Let � be any non-negative integer and m = 0. Then (5.6) is true by (5.4). Hence,
we shall assume that (5.6) holds true for � and for some integer m ≥ 1. That is, we
have b1α

�+ b2β
� ∈ Pm+1M�+dm and we prove (5.6) holds true for � and m+1. For
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any integer i with � + dm + 1 ≤ i ≤ � + d(m + 1), we have b1α
i + b2β

i ∈ M�+dm.
By (5.4) and (5.5), we get

b1α
i + b2β

i ∈ PMi ⊂ PM�+d(m+1) for all integers i with �+ dm+ 1 ≤ i ≤ �+

d(m+ 1)

and hence we get

(5.7) M�+dm ⊂ PM�+d(m+1).

Since, by the induction hypothesis, we have b1α
� + b2β

� ∈ Pm+1M�+dm, by (5.7),
we arrive at

b1α
� + b2β

� ∈ Pm+2M�+d(m+1)

as desired.

Now to finish the proof, we take � = 0 and m = vp((b1 + b2)d). By hypothesis,
we know that TrK|Qp

(Ma−d) ⊂ Zp for all integers a ≤ [d log2((b1 + b2)d)] + 1.
Since dm < d log2((b1 + b2)d) + 1, we get TrK|Qp

(Mdm) ⊂ Zp. Therefore, since

b1+ b2 = b1α
0+ b2β

0 ∈ Pm+1Mdm, we see that (b1+ b2)d = TrK|Qp
(b1α

0+ b2β
0) ∈

TrK|Qp
(Pm+1Mdm) ⊂ Zp. Therefore, we get (b1 + b2)d ∈ Pm+1 which implies that

the power of p dividing (b1 + b2)d is at least m + 1, a contradiction. Hence the
theorem. �

Proof of Theorem 2.8. Given that

C = 2 +

⌈
1

2
max
P

vP(λ1λ2(α1 − α2)
2)

⌉
+max

P
(|vP(λ1λ2)|)

where P runs through all the prime ideals in OK and λ1α
n
1 + λ2α

n
2 ∈ OK for all

1 ≤ n ≤ C.
If possible, we assume that α1 is not an algebraic integer. Then there exists a

prime ideal P of OK such that vP(α1) < 0.
We first claim that vP(α1) = vP(α2). To show this, for each i > |vP(λ1)|, we

have that vP(λ1α
i
1) = vP(λ1) + ivP(α1) ≤ vP(λ1) − i < 0. Using the fact that

vP(x+y) = min{vP(x), vP(y)}, when vP(x) 
= vP(y), and that vP(λ1α
i
1+λ2α

i
2) ≥

0 as 1 ≤ i ≤ C, we conclude that

vP(λ2α
i
2) = vP(λ1α

i
1) =⇒ i|vP(α1)− vP(α2)| ≤ |vP(λ1λ2)|

holds for each i > |vP(λ1)|. Now, by choosing i > |vP(λ1λ2)|, we conclude that
vP(α1) = vP(α2) as vP takes integer values. In particular, vP(α2) < 0.

We note that for each n ≥ 1,

(5.8)
Vn := [λ1α

n
1 + λ2α

n
2 ][λ1α

n+2
1 + λ2α

n+2
2 ]− [λ1α

n+1
1 + λ2α

n+1
2 ]2

= λ1λ2α
n
1α

n
2 [α1 − α2]

2 = V1[α1α2]
n−1.

For n > max {(vP(V1))/2 + 1, |vP(λ1λ2)|}, we have

vP(Vn) = vP(V1) + (n− 1)vP(α1α2) ≤ vP(V1)− 2(n− 1) < 0.

In particular, vP(VC) < 0, as C > max {(vP(V1))/2 + 1, |vP(λ1λ2)|}. This is not
possible, because one notes that Vn ∈ OK for all n ≤ C and in particular, VC ∈ OK .
Therefore α1 ∈ OK . Similarly, we can prove α2 ∈ OK . �
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Remark 5.1. One may try to generalise this argument for k ≥ 3. There are issues
with the valuation argument for more than 2 variables. We may use Hankel deter-
minants of matrices with entries consisting only of λ1α

i
1 + · · · + λkα

i
k to arrive at

an equation very similar to (5.8). Proceeding in the same manner from there, one

may obtain that

k∏
i=1

αi ∈ OK . However, it is not possible to obtain a bound purely

depending on λ1α
i
1 + · · · + λkα

i
k, λi, by induction for the following reason: When

we try to do induction over k, we know the values λ1α
i
1 + · · · + λkα

i
k only for k

terms and do not know for k − 1 terms. The process will follow through but we
won’t be able to determine the constant C, if we assume that |αi|P ≤ 1 for some i
by this method.
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